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PREFACE

This volume contains the text of most of the contributions presented at the 7th Interdisciplinary
Workshop on “Nonlinear Coherent Structures in Physics and Biology”, which was held on the
campus of the Université de Bourgogne, Dijon, France, from June 4 to 6, 1991, with about 80
participants.

As with earlier workshops in this series, the purpose of this workshop was to bring together
scientists concerned with recent developments and various aspects of nonlinear structures and to
provide a forum to stimulate the exchange of ideas among scientists of different backgrounds,
including physicists, mathematicians, biologists and engineers.

Nature provides many examples of coherent nanlinear structures and waves, and these have
been observed and studied in various fields, ranging from fluids and plasmas through solid state
physics to chemistry and biology. Among these beautiful nonlinear phenomena, localized wave
packets, solitary waves and solitons, which propagate without dispersing, are the simplest
structures, and these provide a continuing source of fascination for the student of nonlinearity. In
fact, many real systems sharing the same underlying nonlinear phenomenon can be modeled by the
same basic equations, leading to an understé.nding of their dynamic properties.This correctly indicates
the importance of maintaining the interdisciplinary feature of nonlinear science.

The proceedings reflect the remarkable progress in understanding and modeling nonlinear
phenomena in various systems, and these new developments show that the study of nonlinear
coherent structures is in a state of healthy growth. Experimental, numerical and theoretical activities
are interacting in various studies, which we present according to the following classification :

- magnetic and optical systems

- biosystems and molecular systems

- lattice excitations and localized modes
- two-dimensional structures

- theoretical physics

- mathematical methods

We gratefully acknowledge the Centre National de la Recherche Scientifique, the Region
Bourgogne and the Université de Bourgogne, which contributed to the opportunity of gathering in
Dijon leading scientists in both experimental and theoretical nonlinear science by providing the
workshop with financial support .

We are grateful to Mrs A.Levy, D.Amoux and Y.Boiteux for their active collaboration in the
meeting, and to all our colleagues who helped us in many ways.

Dijon , June 1991 M. REMOISSENET
M. PEYRARD



CONTENTS

PART I : MAGNETIC AND OPTICAL SYSTEMS
Equations of Motion for Vortices in 2-D Easy-plane Magnets

G.M. WYSIN, F.G. MERTENS ...ttt etaeneneeeens 3
Central Peak Signatures from Vortices in 2-D Easy-plane Antiferromagnets
F.G. MERTENS, A. VOLKEL, G.M. WYSIN, AR. BISHOP .................. 15

Free Vortices in the Quasi- Two-Dimensional XY Antiferromagnet BaNiy(POy), ?
P. GAVEAU, J.P. BOUCHER, A. BOUVET, L.P. REGNAULT,

The Electric Resistivity of a Magnetic Semiconductor with Easy-axis of
Anisotropy Populated by Magnon Solitons

M.V. SATARIC, JA. TUSZYNSKI .......coooviiiiieiiiisieeeeeeieieeneeaennns 30
Thermodynamics of Quantum Spin Chains
A. CUCCOLL, V. TOGNETTIL R. VAIA, P. VERRUCCHI ....................... 36

Dissipative Superluminous Brillouin Solitons in an Optical-Fibre Ring Cavity
C. MONTES, E. PICHOLLE, J. BOTINEAU, O. LEGRAND,

CLLEYCURAS ..ottt e et e e e eeens 44
Polarisation Fluctuations in Nonlinear Optical Fibres

A.MAYER,D.F.PARKER........ccciiiiiiiiiiiiiiiiii e 52
Stochastic Dynamics of Spatial Solitons on the Periodic Interface of Two Nonlinear Media

F.Kh. ABDULLAEYV, B.A. UMAROV ....c.ociiiiiiiiiiiiiiiiinii e 60
Conversion of Ultrashort Optical Solitons in the Fibre-Optical Loop

D.V.KHAIDAROYV ...ttt et ettt e el 69

PART 1II : BIOSYSTEMS AND MOLECULAR SYSTEMS
Dynamics of Breather Modes in a Nonlinear “Helicoidal” Model of DNA

T. DAUXOIS, M. PEYRARD .......cccoiiiiiiiiiiiiiiiiiii e 79
Equilibrium and Nonequilibrium Statistical Mechanics of a Nonlinear Model of DNA

M. TECHERA, L.L. DAEMEN, E'W.PROHOFSKY .......ccccoieiiiiiiniann.. 87
A Simple Model of DNA Dynamics

G.GAETA ..o e 95

Anomalous Vibrational Modes in Acetanilide
M. BARTHES, J. ECKERT, S.W. JOHNSON, J. MORET,B.I. SWANSON,
CJ.UNKEFER. ... .ttt te et e e e et et e et e s eraseeaaaenaenas 101
Nonlinear Excitations in a Quantum Dimer
LJ. BERNSTEIN ....itiiiiiiitiiiiiiiiiietteeiet et eretenenarerenenenenearneeanss 110



Kinks in Disordered Conjugated Polymers

F. BRONOLD, K. FESSER ......ciiiiiiiiiiiiiiii i,
A Discrete Selftrapping Equation Model for Scheibe Aggregates

O. BANG, P.L. CHRISTIANSEN ..ottt eee s
Computer Simulation of Cardiac Arrhythmias and of Defribrillating Electric Shocks.
Effects of Antiarrhythmic Drugs

P. AUGER, A. COULOMBE, P. DUMEE, M.C. GOVAERE,

JM.CHESNAIS, A. BARDOU ..ottt

PART III : LATTICE EXCITATIONS AND LOCALISED MODES

Numerical Studies of Solitons on Lattices

J.C.EILBECK ...ttt et
A Symplectic Solver for Lattice Equations

D.B. DUNCAN, C.H. WALSHAW, JAD. WATTIS...........ccceveiiiiinnenne
Solitary Wave Solutions to the Discrete Nonlinear Schrodinger Equation

H. FEDDERSEN ... e
Asymptotic Bi-Soliton in Diatomic Chains

T LEON Lt
Nonlinear Dynamics of Localized Structures and Proton Tansfer in a Hydrogen-Bonded
Chain Model Including Dipole Interactions

I. CHOCHLIOUROS, J. POUGET ......cuititiiiiiiiiititiineiei et ee e
Resonant States in the Propagation of Waves in a Periodic, Non-Linear Medium

J.COSTE, J.PEYRAUD .....ciiiiiiiiiitiiiii et ettt
Gap solitons in 1D Asymmetric Physical Systems

JM. BILBAULT, C. TATUAM KAMGA, M. REMOISSENET ..................
Evidence of Energy Diffusion in Pure Anharmonic Disordered Chains

R. BOURBONNAIS, R. MAYNARD .....ccociiiiiiiiiiiiiiii i
A Numerical Venture into the Menagerie of Coherent Structures of a Generalized
Boussinesq Equation

C.I. CHRISTOV, G.A. MAUGIN .....ccouiiiiiiiiiiiiiiiiiic et

PART IV : TWO-DIMENSIONAL STRUCTURES

Self-Organization and Nonlinear Dynamics with Spatially Coherent Structures

K.H. SPATSCHEK, P. HEIERMANN, E.W. LAEDKE,

V. NAULIN, H. PIETSCH ..ottt
Modulational Instability and Two-Dimensional Dynamical Structures

J. POUGET, M. REMOISSENET ........coiiiiiiiiiiiiii i
Competitive Interactions and 2-D Structures at Finite Temperatures

N. FLYTZANIS, G. VLASTOU-TSINGANOS ......ccciiiiiiiiiiiiiiiiiiniinnnns



Xl

Interactions of Solitons in (2+1) Dimensions

B. PIETTE, W. ZAKRZEWSKI .......cioiiiiiiiiiiiiiiiiiii e e
Spiral Waves in Excitable Media

P. PELCE, J. SUN .o
Kadomtsev-Petviashvili and (2+1) Dimensional Burgers Equations in the Bénard
Problem

R.A. KRAENKEL, S.M. KURCBART, J.G. PEREIRA, M.A. MANNA .......

PART V : THEORETICAL PHYSICS

Non-Linearity and Coherence in Models of Superconductivity

J. M. DIXON, J.A. TUSZYNSKI ......c.ooooiiiianiiaiiiiiaies s,
Chaotic Polaronic and Bipolaronic States in Coupled Electron-Phonon Systems

S. AUBRY, G. ABRAMOVICI, J.L. RAIMBAULT ......ccociiiiiiiiiiiiienenne
Chaotic Motion of Solitons in the PDE Model of Long Josephson Junctions

G.ROTOLIL G. FILATRELLA .........ciiiiiiiiiiiiiiic e
Nonlinear Structure of Phase Motion from the Study of Differential Equations
Near Resonant Tori

M. PLANAT Lottt et e
Noise Induced Bifurcations in Simple Nonlinear Models

K. LIPPERT, K. SCHIELE, U. BEHN, A. KUHNEL................ccoeeeen......
Coherent Behaviour of Single Degrees of Freedom in an Order-to-Chaos Transition

A. CAMPA, A. GIANSANTIL, A. TENENBAUM ......ccccccimmnminnenene.
Dissipation in Quantum Field Theory

E. CELEGHINI, M. RASETTL G. VITIELLO .......ccoooiiiiiiiiiiiiiienn
Coherence and Quantum Groups

E.CELEGHINI .......ooiiiiiiiiiiiii e e e e
Exact Periodic Solutions for a Class of Multispeed Discrete Boltzmann Models

H. CORNILLE .....uviiiiiitiiiit et et et e ettt et e e e e e e e

PART VI : MATHEMATICAL METHODS
Collective Coordinates by a Variational Approach : Problems for Sine Gordon and
@4 Models
J.G. CAPUTO, N. FLYTZANIS .. .ot
Exact Solution of the Perturbed Sine-Gordon Breather Problem

Numerical Results Concerning the Generalized Zakharov System

H. HADOUAJ, G.A. MAUGIN, BA. MALOMED .........c.c.cocvvviiinininnnnns
Resonances in Nonlinear Klein-Gordon Kink Scattering by Impurities

Y.S. KIVSHAR, A. SANCHEZ, L. VAZQUEZ ......................................



Xi

Resonant Kink Impurity Interactions

Z. FEL Y.S. KIVSHAR, L. VAZQUEZ.... ... eetoeeeeeeeeeeeeee e eeeeseenn
Localized Self-Similar Structures for a Coupled NLS Equation:' An Approximate
Analysis

L. GAGNON ..o e e
Searching for Solitons with a Direct Binary Operator Method

F. LAMBERT, R. WILLOX ..ottt st
The Inverse Problem of Dynamics for the Nonlinear Klein-Gordon Equation .
Pulsons and Bubbles in the Models with Logarithmic Nonlinearities

EM. MASLOV ..



PART I
MAGNETIC AND OPTICAL SYSTEMS






EQUATIONS OF MOTION FOR VORTICES IN 2-D EASY-PLANE MAGNETS

G.M. Wysin,” F.G. Mertens!
*Kansas State University, Manhattan, KS 66506 USA
TPhysics Institute, University of Bayreuth,
D-8580 Bayreuth, Germany

The dynamics of individual and pairs of vortices in a
classical easy-plane Heisenberg spin model is studied. There are
two types of vortices possible: in-plane, with small out-of-
plane spin components present only at nonzero velocity, and out-
of-plane, with large out-of-plane spin components even when at
rest. As a result, the two types are governed by different equa-
tions of motion when in the presence of neighboring vortices. We
review the static spin configurations and the changes due to non-
zero velocity. An equation of motion introduced by Thiele and
used by Huber will be re-examined. However, that equation may be
inadequate to describe vortices in the XY model, due to their
zero gyrovector. An alternative dynamical equation is developed,
and effective mass and dissipation tensors are defined. These
are relevant for models with spatially anisotropic coupling in

combination with easy-plane spin exchange.

INTRODUCTION

A model for the dynamic correlations of vortices in easy-
plane two-dimensional magnets has been presented, that uses the
idea of an ideal gas of weakly interacting Vortices.1 Assuming a
Boltmann velocity distribution, and if the velocity-dependent
spin field of the vortices is known, then the dynamic structure
function $%*(q,w) can be determined. At the microscopic level we

would like to investigate the time-dependent motion of a single



vortex, to understand how the neighboring vortices cause forces
and accelerations, and to have a clear picture of how equilibrium
is achieved.

Huberz’3 has done such an analysis for diffusive motion of
so-called "out-of-plane" vortices, ones that possess large out-
of-easy-plane spin components. However, it is now realized that
there are two type of vortices possible,z"5 depending on the
strength of the easy-plane anisotropy.6’7 The stable vortices of
the XY model, for example, are so-called "planar" vortices that
only have small out-of-plane spin components. In that case the
equation of motion that was used3'8 is found to be inapplicable
because these planar vortices have a zero gyrovector, to be
discussed below. Here we propose an alternative dynamic equation
of motion that applies to both types of vortices.

We begin by summarizing the properties of the two types of
vortices allowed in the easy-plane anisotropic ferromagnetic
Heisenberg model. The derivation of the equation of motion
introduced by Thiele,8 in terms of conserved force densities,
will be sketched out, and the breakdown for planar vortices will
be discussed. An alternative formalism using a canonical
momentum for the vortex is developed. The new equation of motion
includes the effects of vortex shape changes that are the result
of acceleration. This leads to definition of an effective mass
tensor, and, the gyrovector also re-appears. The new equation

allows for a consistent description of both types of vortices.

Anisotropic_ Heisenberg Ferromagnet

The model system is the nearest neighbor 2D Heisenberg
ferromagnet with easy-plane anisotropic exchange, characterized

by a parameter 0 < X < 1; the Hamiltonian is



H=-JY (s{s]+ 8{s] +As{5]) . (1)
17

J is an energy scale and the §i are classical spins with fixed
length. The XY model is given when A=0, the Heisenberg model
when A=1. The spin dynamics is described by the Landau-Lifshitz

equation,g’10

Si = {§11H} - Si X *S_:.i = §'X (ﬁi-as—;‘i) (28)
2b
- T¥ (57% + 577+ hsi7) -

(15)

The sum is only over the neighbors of site i. A Landau-Gilbert
damping term of strength a has been included. At any given time

each spin is instantaneously precessing about the effective
field (H;-aS:). 1Initially the vortices will be described in

the absence of damping, a=0, which can be later re-introduced at

the phenomenological level.

Static Vortices

The spins are parametrized in terms of an in-plane angle

¢(x,t) and an out-of-plane angle 0(§,t) (or we use $%=S sinf),

S(X,t) = S(cosB cosd, cosO sind, sinb) . (3)
Then in a continuum limit including terms up to 2nd order in
gradients the equations of motion are®: 27
B = JS (cosB ¥’$ - 2 sind vo-v) (4a)
bcosb = -2 IS {[8([90[2-2) + [94[?] 5in26 + 2 (1-8cos?6) 6} (4b)

where é=1-)A. Using polar coordinates (r,¢), and assuming a



spatially isotropic solution, ¢=¢(p), while #=0(r), static
vortices always have an in-plane angle satisfying Laplace’s
equation,
®(D = gp + ¢, = g tan™ (Z’_YE) v by (5)
X-X,

The charge q is an integer, and ¢y is a constant of integration.

The two types of vortices are distinguished by the out-of-
plane angle §. The static planar vortices have an out-of-plane
angle that is zero, §=0. This solution exists independent of the

6,7

anisotropy A. However, when placed on a lattice, it is found

to be unstable for A>)_,, where A, is a critical anisotropy

CY
depending on the lattice (AC=0.72 for a square lattice). Planar
vortices are stable only for A<X..

Out-of-plane vortices have a nonzero out-of-plane angle

with asymptotic behaviors'7
p(i-ar?) as r-0
sinf ~ (6a)
_I_Z e'r/r" as r-o
r
(6b)
1 A
r. w —_—
Vo2 N 1-2'

where r,, is a characteristic vortex radius and a is a constant.
The charge p is #1 which determines whether the spin at the
vortex center points along +z or -z. When this solution is
placed on a 1attice,6'7 it is found to be unstable for A<A, and
stable only for A>),. Thus we have a situation where either
planar (A<AC) or out-of-plane (A>AC) vortices. are stable, and we
expect that the dynamics may also reflect this as a crossover

point in other quantities.



Dynamic Vortices

The equilibrium correlations between vortices can be found
in an ideal gas phenomenology using the known spin profiles given
above. 1 However, for correlations of the z spin components, for
A<Ac, static planar vortices can contribute nothing to Szz(a,w).
Then the lowest order vortex contribution must come from moving
planar vortices, which do have nonzero S$% components. One can
determine the perturbation due to a constant velocity v by
assuming a solution E(E—Gt). For planar vortices, with A<<1l, to
first order in v we have no change in ¢. The change in 4 is

given by6’7

ing - —2 V& __ .9y, p 7)
sin TS (48-|v|?) 4JSr? VX1

in the asymptotic r-e regime, and r is measured from the
instantaneous center position of the vortex. A similar change in
sinf occurs for moving out-of-plane vortices, but it is small
compared to the large out-of-plane profile already present in the

static out-of-plane vortex.

Thiele’s Equation of Motion

8 and the

We review Thiele’s vortex equation of motion
definition of the gyrovector, which vanishes for planar vortices.
The equation is based on an interesting force-density
interpretation of the Landau-Lifshitz equation, first rewritten

in equivalent form,

-

SxH, =0, (8a)

H,=SxS+H-a5. (8b)

n

H is analogous to that in Eq.(2b), representing the effective



local field from neighboring spins. The other terms in ﬁnet are
dynamic and damping terms, respectively. In this notation the
dynamics is "simple," in that each spin remains parallel to its

instantaneous local field H Thus we could write §=ﬂﬁ

net- net
where B(X,t) = Sz/(§-ﬁ). Combinations of ﬁnet with gradients of

S have dimensions of force per unit volume. Applying the

operator * ajg’éHE’ﬁg, (sum over repeated indices j=1,2) and

realizing S+ %S = 0, there results the statement of conserved

force density,

ﬁ:zec‘3§=(ﬁ+§x§—a§)"\i§=0 9
where the contraction is over spin components.
To apply this to a vortex we assume a travelling wave
S(x - ¥t) , and rewrite time derivatives using § = - v,3,5.
There results
35 + §- (0,5 x 8,5) 6;v, + «(3;8)(8,8) 6,v, = 0. (10)
This then motivates the definition of the gyrovector G,
- 1 (1la)
G; = - Y €;5kCjks
Gy == [d?x § (9,5 x 8,5 (11b)
and the symmetric dissipation tensor D
Dy = - [dx @ (3;8) - (3,5) . (12)

The gyrovector is derived from an antisymmetric tensor ij. An

equivalent expression for G is

c$=szfd2x$¢x?752. (13)
The remaining term concerns reversible effects, It is taken to

give the effective force acting on the vortex,

ﬁ=-fd2x g 95, (14)

Then the Thiele equation of motion is



9
F+GxvV+D:¥=0, (15)

This equation can be used to describe the motion of out-of-plane
vortices, for example, interacting in pairs, with a force
F=2ﬂJ32qlq2/r12. The gyrovector is found to be G=2xpqZ. In the
absence of damping, the pair will move in a circle if the gyro-
vector are parallel (plql-pzqz) or they will have a parallel
translational motion if the gyrovectors are antiparallel
(P191=-P249) -

A problem arises for planar vortices. The gyrovector for

static and moving planar vortices is zero.ll This is due to the
asymmetry of the S% component about the direction of motion. The
Thiele equation of motion becomes singular because the dynamic
term Gxv vanishes. This is most obvious with no damping, then
the equation reads F=0, which is not necessarily true for a
vortex in the field of its neighbors. This leads to a conceptual

difficulty in making a vortex ideal gas description for A<A..

Vortex Momentum

The problem seems to be that the analysis above does not
allow for shape changes of a vortex in response to external
fields as will occur for an accelerated vortex. That is, S% for
a planar vortex depends approximately linearly on its

Velocity.e”7

If it accelerates it changes shape by developing
more spin tilting out of the easy plane. On the other hand, the
out-of-plane vortices have a large S% component even at zero
velocity so velocity-dependent changes in S% may have a lesser
effect.

An alternative viewpoint is to define a canonical

momentum!? B for the vortex, conjugate to its position T, and



10

then use the equation of motion P = - 0H/dF = F. A Lagrangian

that gives the correct spin-dynamics equations of motion is
2 - [aix 5% - B (16)

because $% is the field momentum conjugate to ¢. This then
suggests that we take the definition of the vortex momentum to be
15'=—fd2sz'v'¢ (17)
and then Z=v-P-H for a vortex of velocity v. This definition is
analogous to the canonical momentum developed for describing
solitons in 1-D magnetslz'lg"l4 (generator of translations). For

a planar vortex we get

— ﬂ —
= T (18)
P 155 in(rR/a,) v

where R is a large distance cutoff (system size), and a, is a
short distance cutoff (= lattice constant). The effective mass

seen here is identical to that found from the kinetic energy of

the planar vortex.’
An equation of motion results by conserving momentu.m,15
P = 1*:", and using
P’:—fdzx(SZ'v'¢+SZ’v’¢) : (19)

The vortex shape is determined by its velocity V = F(t) as well

as its position r(t), so we assume S = S-'Zf(' - I(t), V(L)) .
Therefore the time derivative is replaced by space (ajsa/axj) and
velocity (5jsa/6vj) gradients,

a
dt

In the absence of damping the total rate of change of momentum is

= - v, +ady . (20)
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B = - 6K,V + 6;Mpa, = -~ KV + M& (21)

where K and M are an effective gyrovector and mass tensor,

Ky = - [d?x 3,(s* 8,6) (22a)
My = - [d*x ax(S7 0,9) - (22b)

The generalized gyrovector K is related to Thiele's gyrotensor G.

We separate K into a symmetric and an antisymmetric part,

Kjk = Gy + Ljks (23a)
1

5k = 5 Kk = Kgj)s (23b)
1

L = > K + Kij) - (23c¢)

Then the equation of motion now becomes

F=-gGxV-LV+Ma (24a)
where

— 1 l oeg

g=- —Eeijkéigjk = "'2‘G (24b)

E, is the gyrovector, smaller by a factor of 1/2 from equation
11. Note that the origin must be excluded from the integrals
giving K and M. The symmetric tensor L has no effect for
vortices, it is zero for moving planar and out-of-plane vortices.
The mass tensor ﬁ, determined by mixed space and velocity
derivatives, exhibits the dynamic effect that changes in velocity
cause changes in the internal structure of the vortex spin field.
The force need not be parallel to g x V or a.

For planar vortices, §=O, i=0, Mij=(w/4JS)£n(R/ao) 6ij'
Then the equation of motion is Newtonian, °

F-ua (25)

stating that a pair of interacting vortices move straight away or

straight toward each other in the absence of damping. This

behavior is seen in simulations. This is not qualitately
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different from Thiele’'s equation with damping, but this new
approach remains applicable even when the damping is removed. 1In
this way we now have a microscopic dynamics for the vortices in
the XY model, or, whenever A<AC.

For out-of-plane vortices, E=wpq2, i=0, and the mass is
equivalent to the planar vortex mass. Then the equation of
motion is

F+ Gxv=M. (26)

We can consider the interaction of a pair of out-of-plane
vortices, with force F=A/ry,, AEZwJSquqZ. If the gyrovectors
are antiparallel (p1q1=-p2q2), then the motion is unaccelerated
parallel translation as mentioned earlier. However, if the
gyrovectors are parallel (pyq;=psq,), the motion can be circular,
but the angular frequency depends on whether the pair’'s
interaction is repulsive (A>0) or attractive (A<0). For small
mass (AM/G2r212<<1) the frequency is found to be

w = A2(1+—;ﬂ2—). (27)

9Tiz g iz

The repulsive interaction gives the larger frequency, and has the

angular velocity w parallel to g. The attractive interaction,
with smaller frequency, has w antiparallel to g. This new effect
is related to a competition between an intrinsic vortex momentum
(similar to g) and the orbital angular momentum of the pair. For
a given size of force transverse to the direction of motion, a
larger acceleration occurs when the force is parallel to g x V.
The path of the vortex is more easily bent in the g x v direction
than in the -g x v direction (i.e., left turns are easier than

right turns for an "up" vortex, g=gZ).
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Conclusion

An equation of motion developed by Thiele® and Huber?:3 is
limited to cases where the vortex shape is fixed as a function of
velocity, excluding application to the important XY model. An
alternative equation of motion was developed here, based on
finding the time rate of change of vortex momentum. The new
equation alleviates the difficulty encountered when G=0 (for
planar vortices) and indicates new behavior for interacting out-
of-plane vortices. The differences with this new equation of
motion are summarized as follows: 1) an equation of motion
exists for planar and out-of-plane vortices even for zero
damping; 2) the new mass term accounts for velocity-dependent
shape changes that result from acceleration; 3) a pair of out-of-
plane vortices with parallel gyrovectors and 4,=4, (vortex-
vortex) orbits faster than a pair with q1=-49 (vortex-
antivortex), all other things being equal. It should have
important applications for microscopic vortex dynamics,

especially for models with spatial anisotropy, whose vortices

will possess an anisotropic mass tensor.
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CENTRAL PEAK SIGNATURES FROM VORTICES IN 2D EASY-PLANE ANTIFERROMAGNETS
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We investigate the dynamics of a classical, anisotropic Heisenberg model.
Assuming a dilute gas of ©ballistically moving vortices above the
Kosterlitz-Thouless transition temperature, we calculate the dynamic form
factors S(g,w) and test them by combined Monte Carlo-molecular dynamics
simulations. For both in-plane and out-of-plane correlations we predict and
observe central peaks (CP) which are, however, produced by quite different
mechanisms, depending on whether the correlations are globally or locally
sensitive to the presence of vortices. The positions of the peaks in
g-space depend on the type of interaction and on the velocity dependence of
the vortex structure. For a ferromagnet both CP’s are centered at q = 0;
for an antiferromagnet the static vortex structure is responsible for a CP
at the Bragg points, while deviations from it due to the vortex motion
produce a CP at q = 0. By fitting the CP's to the simulation data we obtain

the correlation length and the mean vortex velocity.

1. INTRODUCTION

A wide class of quasi-two-dimensional magnetic materials (e.g. layered
magnetsl, graphite intercalation compoundsz, magnetic 1lipid layerss) can be
described approximately by the classical anisotropic Heisenberg model
H= J ¥ (5% + g9 + a s%%) (1.1)
<ij> i i b
with O = A < 1. The spins §1 are coupled only to nearest neighbors on a
square lattice and tend to be aligned in the xy-plane (easy-plane).

Below the Kosterlitz-Thouless transition temperature Tc bound
vortex-antivortex pairs are thermally excited, but do not move. Above Tc
the pairs begin to unbind and the single vortices move around due to the
interaction with the other vortices.

For the static spin correlations many exact results from the

Kosterlitz-Thouless theory are known. However, for the dynamic correlations
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only a phenomenological treatment has been possible so far. Assuming a
dilute gas of ballistically moving vortices above Tc, the dynamic form
factors S(g,w) have been calculated for the case of a ferromagnetic
coupling4'? The typical signatures of moving vortices are central peaks
(CP’s), which have been observed both in combined Monte Carlo-molecular
dynamics simulations4 and in inelastic neutron scattering experimentsl'2

In this paper we will shortly review these results and discuss the

characteristic changes of the CP's for the case of an antiferromagnetic

coupling.

2. ANTIFERROMAGNETIC VORTICES

We parametrize the classical spins by four angles6

s = (-1)% cos[® + (-1)% ] cos[o_ + (—1)“an]
sz = (-1)"s sin[e + (—1)“¢n] cos[6_ + (—1)“ﬂn] (2.1)
si = (-1)"% sin[e_ + (—1)“0n]'

where the even n denote one sublattice, the odd n the other one. In the
continuum approximation the capital angles @(?) and 9(?) describe a perfect
local antiferromagnetic structure, while the small angles ¢(?) and 0(?)
describe deviations from this structure.

In a previous paper7, we have derived the four equations of motion and
we have found the following continuum limit vortex solutions (to first

order in the vortex velocity u)

o(F) = ¢ arctan(y/x) , ¢(?) =0, 8(%) =0 (2.2)
o(F) ~ v sinlp-e) for large r (2.3)
Z(1+2)JS T & : :

Here r, ¢ are the polar coordinates of ?, and € is the angle between 3 and
the x-axis.

When placed on a lattice, this solution is stable only for A < Ac ~ 0.72
and is called "in-plane vortex" because the out-of-plane components of the

spins are small, or even zero in the static limit. In this paper we do not
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discuss the case A > Ac for which "out-of-plane vortices" are stable, here

0 is nonzero independent of the velocity.

3. IN-PLANE CORRELATION FUNCTION

Inserting the vortex solution (2.2/3) in the definition Sxx(?,t) =
<s*(%,t) s*(3,0)> we obtain

T

%
S = g%<e'*T cos o(2,t) cos[e‘K 0(?,t)] cos ¢(8,0) cos #(3,0)>. (3.1)

Here exp(iz?) = + 1, depending on the sublattice to which ? belongs; R =

(m,m) restricting ourselves to the first Brioullin zone.

C N L e e e e LA S I S R R

0.25] T = 1.00 )

0.20f q = (4848) 1
3 0.15 ;
i :
% 0.10

IR ST S S ST S

0.05]

0.00
0.0 0.5 1.0 1.5 2.0
w (JS)

Fig. 1. In-plane dynamic form factor for A = 0 (XY-model), 3 in units of
2n/L with lattice size L = 100 a. Solid line: simulation data; dashed line:
fit of squared Lorentzian (3.3).

Similar to the ferromagnet4, for large r the main effect of a vortex
passing a lattice site is to flip the spin at this site, i.e. cos & changes
its sign. Compared to this big effect the small angle ¢ can be neglected
and we obtain

> -
2 iKr N(r,t.)>

<cos®e><(-1) (3.2)
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The first average is a static one and gives 1/2; the dynamics is contained
in the second average: N(?,t) is the number of vortices passing an
arbitrary, nonintersecting contour between (6,0) and (?,t). The calculation
proceeds in the same way as for the ferromagnet4 and yields a squared

Lorentzian CP for the dynamic form factor

2 3.2
*3w) = o LS , (3.3)

2T P11+ (8?12

the only difference is the appearance of 3* = K - 3 instead of a. Here y =
VYo w(2£), with rms vortex velocity G, and 2€ is the average distance
between two vortices (according to the Kosterlitz-Thouless theory, £ is

also the static correlation length).

0.20¢ .

0.15} )

0.05]

0.00 ) .
0.0 0.1 0.2 0.3
qa/m

Fig 2. Integrated intensity of in~plane dynamic form factor for T = 1.0.
+: intensity of fitted central peak (3.3); ¢: intensity from simulation
data; solid line: fit to (3.4) for small q*.

Since (3.3) contains no parameters characterizing the vortex structure,
s is only globally sensitive to the presence of vortices. In fact, the
moving vortices disturb the local antiferromagnetic order and thus diminish

the correlations. For this reason the integrated intensity
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2 2
Ix(q*) = lsl-_n —_——5__2_3—/5 (3.4)
[1+(q*€)7]

is inversely proportional to the density n = (ZE)-2 of free vortices.

The prediction (3.3) can be well fitted to the CP which we observe in
simulations on a 100 x 100 lattice (Fig.1l). The resulting data for the
width I and intensity 1* are displayed in Figs. 2 and 3. Moreover, we have
fitted these data for small gq* (because of our large-r approximation) to

(3.4) and to

I(q*) = § Va(VZ-1) 2 +(eq®)® (3.5)

which represents the half width of (3.3). This fit gives us u and £. Just
?bove Tc ~ 0.79 we obtain u » 1 (in dimensionless units) and this value
increases slightly with the reduced temperature = = (T - Tc)/Tc. The values
for €& agree rather well with the Kosterlitz-Thouless prediction

£(T) = exp(b/¥T) choosing b = 0.5.

0.8 ]

0.0 . .
0.0 0.1 0.2 0.3

qa/m

Fig 3. Width of in-plane dynamic form factor for T = 1.0. +: width of
fitted central peak (3.3); solid line: fit to (3.5) for small g*.
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4. OUT-OF-PLANE CORRELATION FUNCTION

Contrary to the in-plane structure, the out-of-plane structure (2.3) of a
vortex is localized. Therefore we expect that S¥(Z,t)=<s*(Z,t)s*(3,0)>
depends on the shape of this structure. We are mostly interested in small
wave vectors and therefore we evaluate

»

z iKr

s** = <e'* sin ['*" #(Z,t)] + sin #(3,0)> (4.1)

for large r where ¢ is small, and obtain <o(Z,t)9(8,0)>. Using (2.3) we
obtain in a vortex-gas approximation, similarly to the ferromagnetic cases,

a Gaussian CP

n u

s*(q,0) = A > 5 eXP (—[w/(ﬁq)]z} . (4.2)
32(1+A)°JVn g

Here 1 + A appears, instead of 1 - A for the ferromagnet. However,

otherwise the formula is the same, i.e. in both cases there is a CP with a
maximum at 3 = (0,0) and w = 0. The reason is that the z-components of
neighboring spins on the two sublattices have the same sign, thus the

out-of-plane structure of an antiferromagnetic vortex shows a local

ferromagnetic order.

Because (4.2) is proportinal to the density n of free vortices, the CP
is very small, cf. the different scales in the Figs. 1 and 4. Moreover, the
stiffness constant of the out-of-plane spin waves suffers no sudden jump to
zero at Tc, contrary to the in-plane magnonse. Therefore magnon peaks show
up in the out-of-plane dynamic form factor also for T » Tc, though they are
much broader than for T <« Tc. Unfortunately there is an "acoustic" branch
that interferes with the CP (4.2) for small ¢, where chances are best to
observe the CP. Therefore CP and magnon contributions here cannot be
distinguished clearly.

Fig. 4 shows simulation data for small g, together with a plot of (4.2)
using the values for u and n obtained from the in-plane correlations. From
such figures for different temperatures we can verify that the CP-width is
consistent with the prediction r* = aq resulting from (4.2). However, the

intensity
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nu
v

(4.3)
32(1+0) %03 ¢°

I“(q) =

cannot be tested because of the difficulty to separate the magnon
contributions. (Remark: The singularity in (4.3) for g » 0 can be avoided
by introducing a cut-off in the order of € in order to account for the

finite size of the vortices due to the presence of the other vorticess.)

0.020| - o0 |

[ q=(22) |

0.015[ )

3 [ ]

= 0.010] ]
N .

0.005|

0.000 (
0.0 0.5 1.0 1.5 2.0
w (JS)

L U

Fig 4. Out-of-plane dynamic form factor for A = Q_(XY—model). Solid line:
simulation data; dashed line: Gaussian (4.2) with u and € from the in-plane
correlations.

5. CONCLUSION

Single vortices in easy-plane antiferromagnets with A < A have a static
c

structure with a locally perfect antiferromagnetic order. Therefore the

in-plane dynamic form factor Sxx(a,w), which is only globally sensitive to
the presence of vortices, shows a squared Lorentzian CP at the Bragg

points.
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The finite velocity of the vortices causes small deviations from the
above structure, producing a localized out-of-plane structure with a
ferromagnetic character. Therefore the out-of-plane dynamic form factor
Szz(a,w) shows a Gaussian CP at the center of the Brioullin zone. The
q-dependence of S reflects the shape of the ferromagnetic out-of-plane
structure and the w-dependence reflects the velocity distribution of the
vortices.

Both CP’s are observed in computer simulations which allows to fit the

phenomenological parameters £ and u.
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Free Vortices in the Quasi-Two Dimensional XY Antiferromagnet BaNiy(POy)2 ?

P. Gaveau, J.P. Boucher, A. Bouvet, L.P. Regnault and Y. Henry
Département de Recherche Fondamentale, Service de Physique
Centre d’Etudes Nucléaires de Grenoble, 85 X, 38041 Grenoble cedex, France.

Non-linear excitations are expected to play an important role in low dimensional magnetic
systems. The existence of soliton excitations in magnetic chains is now well established
theoretically and experimentally. In two dimensions non-linear excitations have also been
predicted to be important, at least for the so-called XY model where the spins are mainly
confined within the magnetic plane. As shown by Kosterlitz and Thouless (KT) and Berezinskii
[1], a topological ordering, associated with the pairing of vortex excitations, is expected to occur
at a finite temperarure Tky. Above Tkr, the unbinding of the vortex pairs gives rise to a gas of
freely moving vortices. Recently, it was shown that the vortex motion results in a flipping
process of the ordered spins [2]. In the fluctuation spectrum, this flipping process yields a
characteristic central peak —the flipping mode. As shown for the case of solitons in
antiferromagnetic (AF) chains where a similar effect was observed, the nuclear magnetic
resonance (NMR) technique is well suited to probe such a narrow peak, centered at m=0 [3].

In real systems, the KT transition and the topological order can never be observed. This is due
to the coupling between planes which, always, induces a three-dimensional (3D) order at a
temperature Ty > Tky. However, for a very small interplane coupling, Ty and Tky can be very

close and vortex excitations, if they do exist, can only be observed above Ty. The application of
an external magnetic field H may change the properties and the dynamics of the vortices. This
latter point has been discussed recently for the case of ferromagnets [4]. For planar
antiferromagnets, one expects the effect of a field H to be small, if it is applied perpendicular to
the magnetic plane (H,). In that case, at least for moderate field values (H<<J) the effect of a
field is essentially to reinforce the planar character of the spin system.

In the present work, we report on nuclear spin-lattice relaxation time (T{) measurements

performed on the compound BaNix(POy)2 [5]. As shown on fig. 1, a spectacular diverging
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Fig.1 : Nuclear spin-lattice relaxation rate 1/T1 of 31pin BaNiz(POgy)2

for H perpendicular and parallel to the XY magnetic plane.

behaviour is observed for 1/T1 as the 3D transition (Ty=23.6K) is approached. The data for
T>Ty are tentatively analysed within a model of freely moving vortices. The extrapolation of this
model to the case where the field is parallel to the plane (H) is also discussed.

The compound BaNip(PQOy4)2 is a good quasi-2D planar antiferromagnet [6]. lts magnetic
structure consists of 2D layers of Ni ions (with spin S=1), located on a honeycomb lattice of
parameter a=2.8 A. The in-plane exchange coupling is antiferromagnetic with the (average)
value J=11K. The planar character observed at low temperature results from a large singte ion
anisotropy D=7.3K. The 3D magnetic ordering occuring at Tn~23.6K is attributed to a very
small interplane coupling J’ (J‘/J=10'3— 10'4). As shown by Regnault et al. [6], just above Ty
(T-Tn<10K), the short range order is mainly two dimensional and can be analysed in the mode
of the KT transition. In that case, it was deduced that Ty should be very close to Tkr :
Tk1~0.95—0.98 TN [6].

Our T1 measurements have been performed on the 3P ions, as a function of the temperature

and for different values and orientations of the external field. In ail cases, the same kind of

divergence for 1/T4 is observed as T—Ty. However, while the data are the same for H =1T and
2T, they appear to be strongly field dependent for H,. Since we want to focus on the diverging

part of 1/T4, we consider only the contributions above the lines drawn on fig. 1. The datato be
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Fig.2 : Contributions from the expected critical fluctuations to 1/T;

for H perpendicular (a) and H parallel (b) to the XY plane.

analysed are shown in fig. 2. These values are expected to describe mainly the critical

fluctuations.

For the phosphorus nuclear spins, the relaxation rate 1/T¢ is given by 1fl'1=2anq"Sa(q,(oN)

where the Aq" are geometrical coefficients associated with the hyperfine coupling and the
S%(q,w) are the dynamical structure factors which describe the magnetic fluctuations. wy is the
nuclear Larmor frequency (on<80MHz) and q is a wavevector of the Brillouin zone. For such a

2D system, a=xy and a=z refer to the in-plane and out-of-plane fluctuations, respectively.
According to the model of freely moving vortices proposed by Mertens et al. [2], one expects

the main contribution to 1/T4 to be given by the flipping mode of the in-plane fluctuations. In

reciprocal space, this flipping mode is limited to a narrow domain of the order of Aq~£~" where &

is the 2D correlation length. Over this domain, Ag is practically q independent (Ay¥=A™) and
1/T1 can be written: 1/T1=AY2,S™(q,0n)= AYSY(wn) where S¥(w) is the spectrum of local

fluctuations. It has a simple Lorentzian shape with a characteristic width y which measures the

rate of the spin flippings induced by the moving vortices. Finally :
1Ti=AY.y / (P+of) ~ ANy (1)

for mn<<y . The flipping rate is evaluated to be :
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y={mny.U (2)
where
ny=1/(2£)° (3)

is the density of the free vortices [7]

nv=(2§o)'2exp(-2b/ﬁ)
and U the vortex velocity [8]:

U=Y (w2)JS2a2nPn, Ln{keTkr{JS%nva2)) (4)

In these expressions 1= T/Tkt-1 and &o=~ a. The parameter b is not known accurately. The KT
theory predicts b=n/2 ~ 1.57 [1] ; however recent numerical simulations yield much smaller
values: b~0.5—0.3 [4,9]. The data of figure 2 are analysed with Eq.1, where A¥, b and Ty1/Tn

are considered as adjustable parameters. Fig.3 gives a few exemples of resulting fits yielding

10 M7 NLAGL AR SRR AR RN R, VLA R RS MR RARAS
[ i ] BaNI (PO
[ T <0907, BaNi,(PO,), T T,.,=095T, ,(PO,), 1
8 b=1,6 T b=0.85 ]
r T - 1
a6 F -
1]
£l
4T
2| t
10 PHAHHHHHHHHHHHH A
i T 08T, | BaNi(PO), 1 T 0,997 | BaNi,(PO), 1
8t b=0,4 T b=0,2 ?
~el ;E '
%] L 4
E ® H=2T ] j
'7‘_4 '_ _' . HLZZT _:
-
2
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28 24 25 26 27 28 29 24 25 26 27 28 29
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Fig.3 : Comparisons between theory (Eq. 1) and experimental
data for different values of A, b and Tir/Tn
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Tr O] Tl Ty b AY (rad®S??) po:ljr(?rzzl K
21,2 0,90 1,6 s 10" 0,027
22,4 0,95 0,85 5 102 0,23
23,1 0,98 0.4 7 10" 3,22
23,3 0,99 0,2 3 10" 13

Table | : Values of the fitting parameters A, b and T1/Ty corresponding to the
different fits of fig. 3.

the values given in table I. The values for the flipping rate y at 24 K are also reported in table I.

A comparison with a recent neutron investigation [10] (y=10 GHz at 24 K) allows us to conclude
that the values to be retained for Tkt/Tn, b and A¥Y range certainly in between the values
reported in the two last lines of table I. For the geometrical coefficient AY the corresponding
values agree also with the evaluation we have made from the frequency shift of the NMR line :
AY=10" rad?s2.

For Hy, a divergence is also observed for 1/T4, which is seen to be field dependent (fig. 2b). At
low field (H,~1T), the vortex model defined above remains valid with similar values for Txt/Tn

and b. For larger field values, the observed increase of the divergence can be interpreted as

essentially due to a slowing down of the flipping process: vy is reduced by the field H, (see
Eq.2). As shown on fig.4, the 3D ordering temperature [10] is observed to increase slightly with

H; : for H, = 6 T, ATn/Tn=1.6%. Since Ty is proportional to the square of the 2D correlation

lentgh & this effect corresponds to an increase of €. In the vortex model (see Eq. 3), this means
that the vortex density ny is decreasing with H, : for H,=6 T, the relative decrease of ny is very
small (Anv/ny=-1.6%). Therefore, if the vortex density does not change very much, it is the
vortex velocity which is reduced by the field. From the 1/T{ data, we can deduce the field

dependence of U. The corresponding values are shown on fig.5, where they are compared to
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Fig. 4 : The 3D ordering temperature Ty as a function of Hy,

observed by neutron scattering measurements [10].
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Fig. 5 : Vontex velocity U deduced from the 1/T; data of fig.2.

The full line represents the theoretical expression given by Huber.
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the velocity given by Eq.4. In antiferromagnets, a field H;, appears to reduce appreciably the
vortex velocity. This conclusion differs from that of the ferromagnetic case [4].

The divergence of 1/T1 observed in BaNix(POy4)2 when approaching TN is well explained by a
model of free moving vortices. The values obtained for b (b=0.4—0.2) is in reasonable
agreement with the recent numerical simulations of Mertens et al. [4;9]. For H=0, the vortex
velocity is in accord with Eq.4 given by Huber [8]. However, it is observed to be strongly field
dependent.
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1. INTRODUCTION

We examine the possibilities of the formation of solitonlike magnon excitations
in "quasi-one-dimensional (QOD) ferromagnets with "easy-axis" anisotropy (EAA). Such
a possibility is indicated(j) under the constraint that the magnetic anisotropy en-
ergy is small compared to the direct exchange energy between magnetic ions. It seems
us that good candidates which can support the existence of such solitons may be found
among ferromagnetic semiconductors (FMS), first of all europium oxide (Eu0).

Not a single FMS had been discovered until 1960; moreover an opinion had been
voiced that ferromagnetic and semiconducting properties were incompatible. After dis-
covering first FMS (CsBr3) their number was growing and at present is close to 100.
Nagaev(z) states the data showing that, for example EuO crystal possesses properties
which allow it to be mapped approximately onto EAA chain. The Eu0 crystals have cu-
bic, of NaCl type, structure. Their importante feature is the absence of an orbital
angular momentum of the electrons in the partially filled f-shells of the et jons.
The ground state of those f-shells is the 857/2 with L=0, S=7/2. The magnetic dipole~
~dipole energy of ferromagnetically ordered spins in that cubic lattice is zero. Those
are the reasons for the crystallographic anisotropy of such crystals to be relatively
very small (the anisotropy field for Eu0 is equal to 0,02 T while the effective ex-
change field is of the order of 102T). On the other hand, such crystals appear to be
almost ideal Heisenberg magnets(z).

The second, and main stage of our work is dedicated to examination of collisions
of conduction electrons with magnon solitons in a FMS with EAA. It is well known that
the existence of localized spin moments that couple to the conduction electrons (CE)
has important consequences on the electrical conductivity of the corresponding crys-
tals. The magnetic fons act as scattering centers so that at sufficiently low tempe-
ratures the scattering they cause will be the primary source of electrical resistance
(ER).

Vonsovsky(3) first realized that an important contribution to ER could occur in

ferromagnets as a result of the exchange interaction among CES and the Tocalized mag-
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netic jons (LMI), often called the s-d or s-f interaction. Nagaev emphasizes(z) that
the model proposed by Vonsovsky represents the most adequate description of FMSs. In
his model the electrons in LMI’s d or f shells interact with one another via the Hei-
senberg nearest-neighbor exchange mechanism while an entirely distinct subsystem ex-
ists which is composed of quasifree CEs in Bloch states of the conduction band (s).
Since in this model the localized d and f electrons can be analized using a virtually
identical treatment we will use the symbol "1" (localized) for both.

2. THE VONSOVSKY MODEL

Let us construct the s-1 model Hamiltonian due to Vonsovsky
Hy = HotHpHH gy M

The first term on the right-hand side represents the noninteracting CES described
by the operators 2y azc which destroy and create an electron with the wave number k
and with up (+) and down (+) spin projection (o=t1/2), respectively

_ +
HS _kz Ekcakcakc : (2)
0

The normalized energy of CEs, induding the Zeman energy due to an applied external
magnetic field h (AEMF), and the zone shift caused by s-1 interaction has the form

%
ko = ZE +to9gMph-SHy 8 . (3)

where m* represents the effective mass of a CE; 9s is the Lande factor; Mg is the
Bohr magneton; S is the spin of a single LMI; wkk is the interaction energy of Von-
sovsky type which arises from thirth term on the right hand side of Eq. (1).

The compounds of europium may serve as an example with a wide conduction band.
In them the effective mass of CEs is of the order of free-electron mass m,. On the
basis of this, and taking into account that the Tattice constant is of the order
RO:3-5-10'10 m, we may estimate that the bandwidth A in Eu chalogenides is of the
order Az3-5 eV.

The second term on the right-hand side of Eq. (1) represents the interionic mag-
netic interaction which is of direct or indirect exchange type

2 Yo 4o ~oF Jg F

Hy = -ggmgh % S 7T'; GCpdnet™Spdnet)™ 7 % Sinet (4)

where the spin ladder operators are Si=5§ii$% and the spin projection operator in
the directon of AEMF is Sﬁ. The energy parameters introduced above are the exchange
interaction constant JO and anisotropic exchange interaction constant Jé.
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The last term on the right-hand side of Eq. (1) describes the exchange coupling
between the CEs and the spins of LMIs. In the single-band approximation this can be
expressed in the direct space representation as follows

) al ., (5)

Hs-] = -1 Wnoo~(Sn"S ag"“no"“na

- Nnogo n
N,o,0

where the exchange energy w . is of short-range type, Sqq- 2T Pauli matrices, and

a:G, a__ are Fourier transforms of the operators ak, a - The Eu0 has rather strong

constant of interaction of the order W~0,1eV.

3. THE SOLITONLIKE BOUND STATE OF N MAGNONS

The formation of bound states of a few magnons in QOD ferromagnet with EAA was
experimentally observed for the first time by Torrance and Tinkham(4). The basic theo-
retical discussion about necessary conditions for the formation of such bound states

in the same crystals is given by Ivanov and Kosevich(1)

. The starting point in this
discussion is the assumption about smallness of anisotropy, i.e. the relative magni-
tude of the energy J -J in comparison with the exchange energy Jo. For Eu0 this con-
dition is fairly fulf1led due to (J )J81:10*3.

We used a quantum-mechanical method formulated in the space of coherent states(s)
and our main results are congruent with those obtained in Ref. 1 in terms of a clas-
sical approach.

We start from Hamiltonian (4). The Holstein-Primakoff representation, which is
adequate description due to $=7/2, allows us to go over from the spin operators to
the magnon annihilation and creation operators, B , B;. In such a way obtained Ha~

miltonian of the “magnon gas" in the k representation is given by the approximate ex-
pression

-1/2 + +
<D eBim V200 ) 1 Bt BY BB 6
G © qudpay T 9270 9 9y (6)

The energy of a one magnon state is defined in terms of the corresponding dis-
persion relation

€q = 95Mgh+2502-20 Scos(R q) - 7

The second term on the right-hand side of Eq. (6) represents the magnon-magnon
attractive interaction. Even in the long-wave limit (Rya»0) the mentioned interaction
remains nonzero as a result of a non-zero spin-wave collision amp11 tude.

We formed the ansatz trial function as a product of Glauber’s coherent states
and after straightforward procedure by virtue of usuage the continuum approximation,
Schrodinger equation with cubic nonlinearity (NLSE) appears.
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Assuming that a fixed number of magnons ¥ is involved in clusterization in terms
of attggctive magnon-magnon forces, we solved NLSE including the normalization condi-
tion [ |y(z,t)|2dz=K. The corresponding envelope of the clusterized “magnon drop"
moves along the chain with velocity v in the form of a bell shaped soliton. After per
forming the Fourier transform of the bell shaped solution y(z,t) we express the den-
sity of magnons with the wave vector q involved in a cluster as follows

2 ’ﬂ'2 2 TrRO
<Nq.> = qq = ]\pa(t)] = N_Z_].f sech {'*Z-J*(ks-q)} . (8)

The corresponding parameters have the following meanings: k. is the solitonic

s
quasi-wave number; u represents the inverse solitonic domain of localization and
hws is the energy of a cluster.
z
J-d
_ v . 00 ., - 1 yxy2
ks—N-ZJO—S—R—g,u—N'é'J—O‘S—,hws—EO'l‘ZMV . (9)

Where the static energy of a cluster Eo and its effective mass M* are expressed

by
] W2(33-0,)? ) e 0
E0 = N€0{1- T———-Joseo T € = £gq=0 M* = N—WZSJO Ov . (10)

The expression (8) has basic importance because it will play the role of magnon po-
pulation in the expressions containing the corresponding correlators in the theory
which follows in the next section.

4. THE SCATTERING PROCESSES BETWEEN CEs AND MAGNON SOLITONS AND THEIR INFLUENCE
ON FMS’s CONBUCTIVITY

The method is based on the formulation of nonequilibrium density matrix first

proposed by Zubarev(6)

1 I -
§ = (1+fdr{exp(-Mr)sM exp(MT)}}Seq (1)
0

where operator M is proportional to the diagonal parts of Hamiltonian (2) and (3) in-
cluding the thermodinamical forces

- . . o o -
M= g YquBq+Q% TeoPkoko > Yq = Bz(sq Hp) 3 Yy = Bp(Ep mHg) (12)

where H is the Fermi level of the conduction band, while My is the chemical poten-
tial of the magnon subsystem; t is dimensionless parameter. The important assumption
is that in a nonequilibrium state where the magnon population is generated by an ex-

ternal alternative field the subsystems are at slightly different temperatures(7)
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B1=(kBT1)'1#32=(kBT2)‘1; T, correspones to the free electron gas while T, characte-
rizes the magnon’s gas. Operator &M in Eg. (11) involves the Vonsovsky interaction
between subsystems

0

" . . 1
6M = (8,78) jL exp(st)g(t)dt 5 Ay = =% [HS,HV] 5 ge<l . (13)
At Tast, Seq represents the equilibrium statistical operator (NSO)
Peq = exp(-M){Triexp(-M)1}"1 . (14)

The main step in the procedure is to find the average value of the energy current
between subsystems taking the average of expression (13) with respect to NSO

A = Tr(shg) = (84-8,)L4, (15)

where L12 represents the kinetic coefficient of the scattaring process

~

0 1 N
Lip = [ dtexp(et)] de{Tr{H (0)exp(~Mc)H (t)exp(Mc)o 3} (16)
Ca 0

Peq
Performing very cumbersome calculations with the simplifications enablied by the
estimations of different parameters, and averaging the kinetic coefficient over all
alowed velocities of "ideal gas" of solitons (IGS) we finally get the mean relaxatio
time for collisions of conducting electrons with IGS as a function of constant AEMF
as follows
<H§> a(s1)+b(31)h+c(s1)h2

<T(h)> = <L12> = m(s1,52,AT)+n(ﬁ1,AT)h (17)

where we used the symbols as follows

Q
—
w
—
~—
[}

= f1(8)+SHF,(8)+4S2H2F5(8,)

b(gg) = 95T, (8, +2SHg Mt o(81) 5 C(By) = 4 2m2fy(s,)

18)
R 172 (
3 n I n 1 0 , 2m*
f 8 E "f B = ,___"f = — H = -~
1( 1) g ‘% 2( 1) 7 By 3(31) gnsn /T?(B]hz)
N n*2 ; =1 gmD
M(81:828T) = Dlgyzsmpummug, ~SW) 3 n(By0T) = 7 9gmg
¢} [¢}
HZSNZRONkBT% m*M*B2 1/2 n2h261
_ pp1ATh2' ﬂ261 ) xerf(—gﬁ;ﬁg—) y AT = TZ—T1<<T2 .

We make a semiquantitative estimation of the relaxation time by using the following
set of available parameters: R0~3-10‘10 m; m*~10730 kg, T,=10 K, AT~1K; $=7/2,
W~10721J, M*~10730 kg, J0~1O'2° J, N-5, u1~u2~10'19 J, u-1073.
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On the basis of aforementioned estimations we obtain the following AEMF depen-
dence of relaxation time

<e(h)> = (Q‘I-f—ﬂﬁﬁ)-10'8 s (19)

which yealds that for h-0,7 T the minimum relaxation time has the value <t> »n~1-10'85,

mi
Fig. (1). The possible conclusions could be as follows. Supppose that by the method

of parametric resonance by an alternating magnetic fie]d(s) at radio frequencies the

7 (107%)

2

0 1 2 3 hT)

FIG. 1. The field dependence of the relaxation time corresponding to the conduc-
tion electron IGS at T1=10 K and aT~1 K.

generation of coherent magnons leads to soliton formation. Having in mind that the
scattering of CEs with phonons in the aforementioned temperature range is negligible,
we expect that measurments of electrical resistivity of MS as a function of AEMF will
reveal the features predicated by law presented by formula (17).
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1. Imtroduction and summary.

In this paper we consider the ferromagnetic chain with easy-plane anisotropy D
and in-plane applied Zeeman field H. Its quantum hamiltonian reads:

N
7:{=Z [—Jéi'gi+1+D(§iz)2".‘JNBHSiz] ) (1.1)

i=1

with lélz = S(S +1) . This hamiltonian is believed to have a physical realization in
the real system CsNiF;, with S=1,J=236K, D=9K, g =24.

For strong planar anisotropy, the classical counterpart of (1.1) can be approximated
by the so-called planar model, which in the continuum limit becomes the sine-Gordon
(SG) model. The latter admits soliton excitations contributing to the thermodynamics.
This has lead to the search for soliton-like behavior in the easy-plane ferromagnetic
chain, both theoretically 12 and experimentally 3~5. Indeed, experimental measure-
ments * of the magnetic contribution to the specific heat in CsNiF3 have risen many
attempts to relate the peak in the ezcess specific heat (i.e. the difference between the
specific heat with and without applied field H) with the existence of SG-like nonlinear
excitations 5.

However, as it has been clearly shown by Pini and Rettori *, the thermodynamics of
CsNiF; requires a quantum mechanical treatment, especially in order to account for the
relevant quantum character of the out-of-plane fluctuations 51°. Quantum corrections
to the classical SG thermodynamics have been introduced 89, and modified SG-like
theories have been developed ®1° in order to include a better description of the out-of-
plane part.

In this paper we put forward a new approach. We start by observing that the
quantum hamiltonian (1.1) can be expressed in terms of canonical operators by means
of the Villain transformation . Then, in section 2 we show how to approximate
the general path-integral formula for the partition function *%!% by using a nonlocal
quadratic “trial” action functional, containing a number of variational parameters which
are functions defined in phase-space. These parameters can be at best determined after
a variational principle, and the approximated path-integral can be put into the classical
form of a phase-space integral, allowing us to define an effective hamiltonian. In order to
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get simple and useful expressions, we then introduce an approximation of “low quantum
coupling”, which, however, preserves an exact description of the quantum behavior of
the harmonic part — even at lowest temperatures, where the results of the selfconsistent
gaussian approximation are actually recovered —, as well as of the classical nonlinear
behavior — with quantum renormalizations which, in the high temperature limit, do
agree with the results of the Wigner method —. )

In section 3 we apply the above framework to the (Villain transformed) hamiltonian
(1.1). We show that the corresponding effective hamiltonian can be recast, in terms of
classical spin variables, into the same form of the original hamiltonian, with suitably
renormalized parameters, but for the appearance of an exchange anisotropy term. Then
we use the effective hamiltonian in numerical transfer matrix calculations, and report
some quantum results for the specific heat, showing their fairly good quantitative agree-
ment with the available experimental data for CsNiFs, as well as with computational
data by other authors 4. In addition, we also compare with the results of the quantum
planar and SG models, for which a simplified version of the variational method leads to
the corresponding effective potentials %1%, showing that the nonlinearity of the exchange
term (which is neglected in SG) plays a relevant role. We conclude that the nonlinear
thermodynamic behavior of the spin chain only qualitatively can be explained in terms
of SG solitons.

2. The effective hamiltonian.

Let 7:((13, Q), be the hamiltonian operator of a quantum mechanical system with NV
degrees of freedom. We use the matrix notation p = {p:},_, , and§= {é‘}i=1 N
for its momentum and coordinate operators, which satisfy canonical commutation rela-
tions [ps, §;] = ihéi;.

The equilibrium partition function Z of this system at the temperature T' = g~
can be expressed as a functional integral over paths {p(u), (_/(u)} in phase-space:

z=cPF - / D[p(w)] / Dlq(w)] e SlP@ha)] 2.1)

9(0)=q(8)

with the action functional
ﬂhd
U . .
S[p(w), ¢(u)] = / 5 [zp‘q - H(p, q)] : (2.2)
0

In order to give a mathematical meaning '? to the above formulas, one has to define
the function H(p, ¢), which is associated with the hamiltonian operator H(, §) by some

ordering rule (e.g. the p-¢ order %3  obtained by moving the p; on the left of the
di), and an additional condition on the p*¢ term (which, in the case of p-¢ order, reads

p'q — p*(u)g(u +0) ).
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If we are able to calculate path-integrals with a trial action Sy [p(u),q(u)] , con-
taining a proper set of variational parameters 13, it is possible to minimize the r.h.s. of
the so-called Feynman-Jensen inequality:

F < Fo+B7(5-35) (2.3)

So

in order to approximate (2.1). The functional average ( - )s, appearing in (2.3) cor-
responds to the path integral (2.2) with the integrand functional e multiplied by
So — 5, divided by Z; = exp ( — BFy)

The trial action we will use has the following general form:
ﬁhd 1 1
U I, 4.
So [p(u),q(u)] = / + [zptq —w — —2~6pt A? §p—6pt X §q — -2-6qt B? 6q] , (24)
0

where §p = p(u) — p and §q = ¢(u) — 7, and the functionals
ﬁhd
L u
?9) = | 75 (¢(w), () (2.5)
0

represent the average point of each path (p(u),q(u)) . Moreover, the real c-number w
and the real N x N matrices A, X and B are functions of (p, ), and are considered as
the variational parameters of the trial action. Of course, they are subjected to proper
constraints (for instance, A and B are symmetric). In addition, the matrix ¥ = A7 XA
is constrained to commute with the matrix B, which makes the path integrals with S
appearing in (2.3) of easy evaluation. The final result for Z, can be put in the classical
form of a phase space integral over p and ¢ (in the forthcoming formulas we will suppress
the bars).

The calculation leads to the formal diagonalization problem of the matrices ¥ and
2% = AB?A — ©'Y | which are diagonalized by the orthogonal matrix U(5, §):

o éu= (UXZUY,, , wi b= (UQ*UY,, , (2.6)

and we can equivalently consider as variational parameters to be determined by (2.3)
the independent components of the matrices A(p, ) and U(p, q), the sets of eigenvalues
{wi(p,q)} and {ox(p, q)}, and the function w(p,q). The minimization of the r.h.s. of
(2.3) with respect to w yields the vanishing of (S — So> o7 5O that we are allowed to

define an effective hamiltonian Heg(p, ¢) by which the approximated partition function
can be written in the classical form

2, = o BFo _ / dgﬂiq e~ BHea(p:q) (2.7)

sinh fy
fo 7

Her(p, q) = RS H(p,q) — Z wi g+ %Z In (2.8)
k k

where

ApO=30M,  al)=g—(cthi-f) . (@9)
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n eq. (2.8) H(p,q) represents the function associated with H by Weyl ordering 2, also
salled the “Weyl symbol for H”:

H(p,q)=/ds<q—§{ (5,49 ‘Q+ >ei””/" , (2.10)

and the differentiation operator § = (n'd, +£'9,) /2 acts on the arguments of H(p, q).
The gaussian average {{ - )), which operates on the fluctuation variables {m} =n=
AU and {&}) =€ = AU, is uniquely defined by the second moments of their
transformed components {ﬁk} and {Ek} :

(i) = witoD)ew , (&) =-orar , (E)=o . (2.11)

The further minimization of Fy with respect to the remaining parameters gives their
determination as

f

A?] 6((¢2)) Hpip,' (p>Q) )
(wi+0%) =D (UA),, (49 Mg, (0, ) (UA),;

> (2.12)
2
ok bk = Z (UA_I)M (6«?} » Hpig; (P>‘1)) (UA)U
ij
These are coupled self-consistent secular equations, the first of which determines the
“reciprocal mass” matrix A%. The subscripts of H denote the corresponding derivatives.

The above formalism, when applied to a quadratic hamiltonian (with the “mixed”
term satisfying the above mentioned constraint of commutativity), gives the exact par-
tition function. Indeed the variational parameters turn out to be constant, and equal to
the corresponding coefficients in the starting hamiltonian, so that the partition function
turns out to be the fully quantum one, Z = 3", (2sinh fk) —1, thanks to the logarithmic
term appearing in Heg.

However, it is generally very hard to solve the above self-consistent equations for
any phase-space point, a task that presumably will numerically last as a heavy quantum
Monte Carlo simulation. Therefore a further simplification is in order. If the operator
e&#™) only slightly affects the Weyl hamiltonian, we can rederive the “low coupling
approximation” (LCA) that we have extensively used in the standard case of the effective
potential %13 |

The LCA consists in expanding the variational parameters around their values in
the self-consistent minimum (py, go) of Hest(p, ¢), in such a way that Heg is correct within
terms of order a?. The simplest form of the LCA occurs in the case of translationally
invariant systems, for which the matrix U(pg, go) is nothing else but a standard real
Fourier transformation, which also diagonalizes the reciprocal mass matrix:

(UAUY), =mit bu . (2.13)
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Here and in the following the dependence on (pg, go) is understood. The LCA effective
hamiltonian then reads

inh fx

Herr(p,0) = €9 H(p, ¢) = (%) 9 H(po, o) + % PIRLE 50 (214
k

and the variational parameters can be obtained by Fourier transformig the second
derivatives of Hesr

= ZUkiUkjap;ap,'Heff(pa (I) 3
i Pos90
o = ZUkiUkjap,-aq,- Hest(p, ) ot (2.15)
ij
mp (w,f + a,f) = ZUkiUkjaq;aqj Hewt(p) q) rod
0590

ij
It turns out that the first term of the effective hamiltonian is the result of a broad-
ening of the Weyl hamiltonian, on a scale given by eqs.(2.11) for each “normal mode”.
Eqs.(2.11) represent the pure quantum contributions (i.e. the quantum ones minus the
corresponding classical) to the square fluctuations of the canonical coordinates for a
hamiltonian corresponding to the quadratic approximation to Heg. Finally, we note
that the high temperture limit of H.g concides with the Wigner effective hamiltonian,
so that the Weyl ordered hamiltonian H represents the well-done classical limit.

3. Effective hamiltonian of the spin chain.

Exploiting the easy-plane character of the system (1.1), we perform, for each spin
operator_ S the quantum Villain transformation ' to canonical coordinate operators
S — {S ,go} , satisfying [(p, S‘] =1

§¥(5%,9) = \[S(S+1) - 55 +1) , $~=@EH' . @

The Villain transformation allows us to use the variational method described in the
preceding section. The Weyl symbol for S* (S z g&) is easily found to be:

(8%, ¢) = \/S+ —(59)* F¥ | (32)

It follows that it is natural to scale the “momenta” S? with S =8+ 1 3> defining
p=8%/5 . Then [4,p] = i/S , and S~ plays the role of % . Eventually, the Weyl
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symbol for ﬂ(ﬁ, () reads

2
~ bi
H(p, )= JS? E [—p.‘pi+1—\/1—1’?\/1—17?+1 cos (pi—pit1) + 'ﬂ—h 1—p} cos <Pi} )

' (3.3)
where v = J/(2D) and h = gupH/(JS) . This hamiltonian is a “classical counterpart”
of (1.1), with the unusual correspondence of the quantum spin operators S to classical
unit vectors of length § = §+1 /2 . For low values of the spin S this is, in our opinion, a
sensible classical counterpart of (1.1), at difference with the usual naive procedure 7.

In the present case the “skew” variational parameters o) = 0 , and only the follow-
ing three quantum renormalization parameters turn out to be relevant

A b 1
DI,E«n?»::lN— d Eaik(cothfk—ﬁ) )

A
Dy = () =% E‘fb"; (coth fr— f—lk) , (3.4)
k

A . o k 1
Ds, = (((fa - fi-—l)z» = ﬁzk_:tlsmz 2 %Ifk—(coth fi — —ﬁ>

The usual field theoretic definition of the coupling constant is A\ = (7§2)_1/2, and
fr = Aagbi /(2t), where t = T/ (J Sz) is the dimensionless reduced temperature and

ai=1+7[71—2(1—e—D"“’/2)+4sin2§], b2 = 62 [71+4Tsinzg-] . (3.5)

Moreover, h = he=Pe/2, §2 = 1 — Dy/2 and 7 = §2 e Dse/2
If we neglect, in view of the easy-plane character and according to the low-coupling
approximation, terms of the order Df, , the resulting effective hamiltonian can be written

for classical spin variables s; (Is,-l2 =1,sf = p.-/5) in the same form of (1.1), but for
the appearance of a further anisotropy term in the exchange:

JS?

i=1

Hesr N (s?)2 ~ sinh fi
— = §? Z ~sisiyy — 'r(sfsf_,_l + sf’sf’_*_l) + 2'7 — hsf| + tZln o + A,
k

A= _12\1 [TL(D¢ +D, - DPD¢/2) + e~ Dee/2 (D&,, +2D, — D,,D&,,)] +tlné .
(3.6)
If welet A — 0, keeping v fixed (which corresponds to the limit § — 00), the Weyl
symbol H is recovered.

The model parameters characteristic of CsNiF; correspond to the value of v=13.
The low value of the spin S = 1 yields a rather high value of the coupling parameter,
A = 0.58, which is at the limit of reliability of the above framework. The evaluation of
the thermodynamic quantities of CsNiF; has been done by the classical transfer matrix
method, using the effective hamiltonian (3.6). The convergence of the method at lowest
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temperatures has been checked and connected with the corresponding self-consistent
gaussian approximation.
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Figure 1 — Exzcess specific heat per site (in units of kp) versus the reduced
temperature t = T/(ng). Model parameters characteristic of CsNiFg, to
which the values of v = 1.3 , A = 0.58 do correspond. Field: H = 5 kG
(h = 0.022). Solid line: quantum result. Squares: ezperimental data (ref. 4).
Triangles: quantum Monte Carlo data (ref. 14).

In the figures we report data for the ezcess specific heat per site, i.e. the difference
between the specific heat and its value for zero Zeeman field. Indeed, the experimental
measurements in CsNiF3 made by Ramirez and Wolf # do report this difference, since
it is not affected by the lattice contribution. In figure 1 the results of our calculation
by use of the effective hamiltonian (3.6) are reported versus the reduced temperature
t=T/ (J 52), and compared with the experimental data and with quantum Monte Carlo
results by Wysin and Bishop 4. The good agreement witnesses both the usefulness of
the method and the correctness of the interaction parameters used for CsNiF;.

In figure 2 the same results of the variational method are compared with the quan-
tum results of the planar model and of the sine-Gordon model. Although the latter
were calculated previously 1°, we note that here we have used the correct procedure
of approximating the quantum (Weyl ordered) hamiltonian to these two limits models,
which gives rise to the same coupling parameter A = 0.58 reported above. The quantum
calculation has been performed within the framework of the variational method, using
the corresponding effective potential. It is apparent that the anharmonicity of the in-
plane exchange, which is retained by the planar model, is important, but is not enough
to explain the full nonlinear contribution to the thermodynamics of the easy-plane fer-
romagnetic chain. The necessity of using a realistic model, which takes into account
together out-of-plane fluctuations and anharmonic exchange is apparent.
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Figure 2 — Quantum results for the czcess specific heat. Units and model

parameters as in figure 1. Dashed line: sine-Gordon approzimation. Dash-
dotted line: planar approzimation. Solid line: full effective hamiltonian.
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Abstract : Generation of large-scale spatio-temporal coherent structures caused by
stimulated Brillouin backscattering of a narrow-band laser wave in a large-gain one-
dimensional nonlinear medium is studied by comparing the numerical simulations and
the analytical asymptotics of the three-wave resonant model to actual experiments in
a single-mode optical-fiber. This comparison recently allowed us to predict (1] and to
perform the first experimental observation [2] of the ”superluminous” Brillouin soliton
backward propagating with respect to the cw pump in an optical-fiber ring-cavity.

I Introduction

Stimulated Brillouin scattering (SBS) is the dominant stimulated scattering process
in many optical media, and particularly in optical fibers, pumped by single-frequency
lasers [3] [4]. Considered as a detrimental effect for optical communications and above all
for laser-plasma fusion experiments, where it is responsible of reflecting a large fraction
of the laser energy, an important aim has been to limit its efficiency [5]. However, it
allows also to achieve efficient pulse amplification and compression since 1968 [6].

The spatio-temporal SBS kinetics is well described by a three-wave nonlinear res-
onant interaction [7]. Our purpose has been to better understand the time-dependent
SBS generation of large-scale coherent structures by comparing the numerical simula-
tions and the analytical asymptotics of the three-wave coherent model to actual exper-
iments in an optical-fiber.

In the one-dimensional problem, the forward-propagating pump wave (at frequency
wp = kpe/no) couples with the thermal phonon fluctuations of the material medium
(at frequency w, = 2c,wpno/c, where ¢, is the acoustic velocity and no the unper-
turbed refractive index) and stimulates a counterpropagating Stokes wave (at frequency
ws = wp — w,) downshifted by the acoustic frequency (w,). The acoustic wave is in
turn amplified by electrostriction. The resonant condition for the three-wave coherent
interaction (wp = ws + wa) provides maximum power transfer when the wave-vector
mismatch is zero (k, = ks +ka ; = ko = kp + ks ~ 2k,). Thus, assuming slowly vary-
ing envelopes for the waves, neglecting optical dispersion, and respectively denoting the
complex amplitude E, for the pump wave, Es for the counterpropagating Stokes wave
and E, for the acoustic wave, the three-wave equations read as follows in a coherent
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dimensionless form [8] [9] :
(8 + Oc + o) Ep = —EsE,
(8 — 8, + pe)Es = E,E* (1)
(8: + pa) Ea = E, E,

where the acoustic velocity has been neglected, due to its smallness relative to light ve-
locity (normalized to unity), and where g (¢4) is the damping coefficient for the optical
(acoustic) wave. Moreover, additive terms in Eqs.(1) allow our numerical simulations
to account for phase modulation due to optical Kerr contribution [9].

We have carried out numerical and asymptotical studies of the coherent space-time
dependent kinetics, with actual experiments in an optical-fiber ring-cavity, which lead
us to consider two main SBS time dependent regimes : (i) Stokes pulse amplification and
compression under nonstationary conditions [8] [9], and (ii) generation of a backscattered
Psuperluminous” Stokes soliton accompanied by self-induced transparency for the pump
[1] [2]). Let us mention two previous papers [10] [11], closely related to the theoretical
and numerical models, though some confusion appears between regimes (i) and (ii).

The compression regime (i) takes place when two separated pump and Stokes pulses
interact in a counter-propagating motion. The Stokes pulse behaves as a shock-wave, the
amplification of which depleting the pump wave. The interaction amplifies the acoustic
wave by electrostriction starting from the Stokes leading edge and propagating with
the Stokes pulse in its backward traveling motion. The Stokes amplification strongly
depends on the shape of its leading edge, but for long enough times it takes the shape
of a "w-pulse” self-similar profile [12] whose leading maximum amplitude grows linearly
in time while its width decreases as the inverse of time [8]. It is difficult to identify
this asymptotic stage in an actual experiment, since we must control the initial Stokes
pulse. A stable train of compressed Stokes pulses (to ~ 10 ns) has been obtained in
a stimulated Brillouin fiber ring laser (of length L = 83 m), similar to that shown in
figure 1, but where the acousto-optic modulator (AOM) was put inside the ring-cavity,
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and the Ar-ion cw pump beam, at A, = 514.5 nm, was coupled into the fiber through
the first Bragg order of the AOM [9]. By periodically interrupting the pump beam
and the Stokes leading edge at the round-trip flight time Aty = Lng/c =~ 420 ns, we
periodically repeated the compression experience. The experimental time scale for the
generated Stokes pulse width (~ 10 ns) is comparable to the spontaneous acoustic decay
time in silica (~ 7 ns deduced from a spectral Brillouin bandwidth of Av = 150 MHz at
a pump wavelength A\, = 514.5 nm) [13] and therefore absolutely calls for the use of the
coherent description given by Eqgs.(1). These studies have allowed us to better precise
the experimental configuration for obtaining the second regime, which is the object of
this paper.

II. Dissipative Brillouin soliton

Let us look for soliton solutions of Eqs.(1) which involve the coherent dynamics of
a self-similar backward-propagating three-wave (pump-Stokes-acoustic) structure. For
the three-wave interaction (1) in the nondissipative case (i.e. p. = p,= 0), specific
traveling wave solutions have been studied in the forward-scattering case [14] - [16].
Corresponding solutions in the SBS case display new interesting features that persist in
the dissipative case [10]. These solutions are special cases of a broader class of solitons
previously described through inverse scattering transform [17] [18].

However, in the case of silica optical fibers, it is not possible to neglect the dampings
(#: # 0). Analytic traveling-wave solutions are still available if the pump attenuation
is neglected, which is locally legitimate as long as p./ps < 1; it is indeed the case in
our experiment. Starting from Eqs.(1) we first perform the change of frame moving in
the backscattered direction £ — z + vt, t — t which yields :

[6: +(1+ v)a,]E,, = ~EsE, — p.E,
[8 + (v —1)8;| Es = E,E} ~ p.Es (2)
[6: + vaz]Ea = Ep,E§ — poEa.
Then, by defining the A;’s fields as
A =|149)'E,; Ay =Ww—1"?Bs; A3=|'E,; (3)
and looking for stationary solutions in the new frame, we have :
aXAl = -—81A2A3 - 81P1A1
axAz = 82A1A; — szzAz (4)
aXAz = 83A1A; - 83P3A3

where X =z/|(v — 1)1 +o)['/* 5 p1 = pelv — 122 /1 +0]*/%

po = pelL o 2ol 2 o — 1177 ; py = palL o 2o — 12 o2

and 81 = sgn(l + v), s = sgn(v — 1), s3 = sgn(v). Taking into account stability
arguments [18], we shall be concerned only with the solutions for which v > 1, i.e. a
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structure moving at a velocity larger than velocity of light (the v < —1 case only inter-
venes in a transient stage of the nonlinear interaction and is asymptotically unstable).
Since g, < p, and v > 1 we also have p; < p3 but p; and p; are of the same order, i.e.
pe ~ [v — 1|pta. Thus, for p; = 0 and s, = s; = s3 = 1, we obtain the following solution

A; = —A tanh AX + Aq

Ay = A3 = A sech AX (3)
with Ag = pz = p3s. Therefore
He v—1 1
—_— = = V= ————— 6
Ha = 1~ pe/Ha (6)

From (3) we obtain the expressions for the initial amplitudes of the waves
Ep, = Py — P tanh[(z + vt)/4],
Es = § sech[(z + vt)/A], (7

E, = SP[2/(5% + P?)] 172 sech[(z +vt)/A],
with the extra relationships

Py = (l‘el‘a)l/za S/P = (2”0/”6 - 1)1/2, (8)

the width of this backward complex structure being given by

_ (I‘E/l‘a)l/z
A= P(1— pe/pa)’ ©)

There is only one free parameter left which will be taken as the pump amplitude at the
far left end of the structure shown in figure 2, namely Py + P = E,(z + vt € —A) = 1.

This superluminous self-similar Stokes pulse does not contradict by any means the
special theory of relativity. Its motion can be viewed as the result of an amplification
of the leading edges of the Stokes and acoustic pulses while, at the same time, their
rears are depleted, the pump wave being partially restored after the interaction, in
some cases with an opposite phase. This behavior is quite reminiscent of the self-
induced transparency effect encountered in the coherent pulse propagation in a two-
level medium [19]. No transportation of information can be obtained via this process
which can only occur if a sufficiently extended background of Stokes light is available
so that the superluminous self-similar amplification takes place. If at a given time
(t=200 in fig.2) we perturb the soliton profile by "engraving” a signal, this one moves
at the velocity of light (i.e. remains at rest in the backward moving frame of fig.2) and
the Brillouin soliton runs away at the "superluminous” velocity. Figure 2 also shows
the elasticity of the soliton structure. An additive interesting feature obtained by the
numerical treatment of Eqgs. (1) is that, when it is built, the Stokes pulse is no longer
perturbed by pump phase fluctuations, which are compensated by the acoustic wave
(cf. fig. 3).
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SBS—solibon:Em=5.7;u=3;u.=0.06;A=025

-t

Fig. 2 Dissipative superluminous Brillouin soliton given by formulas (7), for p, =3,
pe = 6 x 10~2 in the frame moving backward at the velocity of light (Stokes frame).
Note that the pump is partially restored after the interaction. At time t=200 a signal is
"engraved” in the soliton profile. The signal remains at rest in this backscattered frame
and the Brillouin soliton runs backward away at the ”superluminous” velocity. It cannot
transport information.
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Fig. 3 Numerical compulation of Eqs.(1) for the ring cavity with p, = 10, pe = 1072
and L/A =20, where A is the SBS characteristic length (Ref. [9]). Curve (a), train of
backscatiered solitons [output Stokes component Es(0,t)]; curve (b), transmitted pump
amplitude E,(L,t) showing spikes generated by random phase shifts; curve (c), Stokes
phase, almost unsensitive to the pump phase jumps; curve (d), strongly modulated pump
rhase; curve (d), acoustic phase, following the pump phase jumps.
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414 ns—-——————b

Fig. 4 (a) Ezperimental superluminous Brillouin Stokes solitons superimposed to the
evolutive pulses spaced by Alr.

(b) Ezperimental stability test of the Brillouin fiber-ring laser: siz superimposed un-
correlated couples of pulses.
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ITI. Numerical and experimental results

In order to observe the spatial extended soliton envelopes in actual experimental
situations, we must choose the interaction length as long as possible by allowing the
Stokes envelope to be always in interaction with the pump in order to avoid the initial
stage of the shock-wave regime (i), i.e. whithout cutting the Stokes leading edge. This
has been achieved in the optical-fiber ring-cavity shown in figure 1, where the 50/50%
beam splitter ensures the coupling of the cw pump wave into the cavity and the con-
tinuously recoupling of the backscattered Stokes wave. This configuration allows the
Stokes wave to spread along the whole ring cavity.

However, we must also prevent the asymptotic steady state regime of the so-called
Brillouin mirror : In the case of an ideal monochromatic cw pump wave, the numerical
treatment of the coherent three-wave equations (1), with the feedback boundary con-
ditions due to the cavity configuration, shows that, after some pulsed transients, the
parametric SBS instability is saturated by the large depletion of the pump inside the
medium, due to the accumulation of the phonons at the fiber input end, and gives rise to
its reflection into a backscattered continuous Stokes wave [9]. This ideal case is indeed
obtained in the experiment for high enough pump powers (beyond 250 mW coupled
into the fiber), but for small cw input powers (below 100 mW) the experiments show
pulsed nonstationary regimes exhibiting soliton-like profiles for the Stokes envelopes
and self-induced transparency for the pump. These regimes are unstable and present
sometimes several Stokes pulses in a round trip. But the stabilization of the pulsed
regime, even at high intensity level, may be obtained by periodically interrupting the
pump wave with the AOM during a time longer than the spontaneous acoustic damp-
ing time p;!. The modulation is achieved outside the ring cavity, so that the Stokes
pulses may develop their wings through the whole ring cavity. For a good efficiency,
the modulation frequency must roughly correspond to the round-trip flight time in the
cavity. In this configuration the Brillouin mirror regime is totally prohibited and a
stable soliton-like regime may be reached. We have obtained by this way sequences of
well-shaped Stokes pulses for a few milliseconds {2]. In figure 4 are superimposed two
couples of experimental Stokes pulses recorded at the output of the cavity during two
consecutive sequences of qualitatively different dynamical behaviors. The first one is
associated with the building phase [compressional regime (i)] of Stokes fine evolutive
structures separated by 420ns, which is, within a precision of 2 ns, the round-trip flight
time At = Lng/c in the cavity at the group velocity of light in the fiber. The second
one corresponds to a very stable sequence of hyperbolic-secant-like fitted pulses ‘which
repeat themselves every 414ns. The stability of these soliton-like pulses is quite remark-
able as can be verified on figure 4(b), which shows six superimposed uncorrelated couples
of Stokes pulses. We also verify that a non-zero level of pump intensity is transmitted at
the other end of the fiber. Superluminous velocity and partial self-induced transparency
are certainly the most undisputable proofs of the physical relevance of the dissipative
Brillouin solitons. It is interesting to note that, by using such an externally modulated
pump wave, a numerical treatment of Eqs.(1) shows the birth of the solitonlike profile
by starting from completely stochastic amplitude and phase acoustic fluctuations.

It should nevertheless be kept in mind that the asymptotic stage is not reached.
What we observe is an incompleted growing quasisoliton. In fact, in the experiment,
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a quasisoliton pulse is amplified and accelerated at each round trip in the cavity, but
is also prevented from completing its growth every time it reaches the end of the fiber
before being recoupled at the other end with a lower amplitude due to recoupling losses
pertaining to the ring setup.

In conclusion, dissipative superluminous quasisolitons, observed for the first time in
a Brillouin optical-fiber ring laser [2], can account for nonstationary dynamic behaviors
of the backscattered Stokes wave and self-induced transparency on the transmitted
pump wave. The coherent Brillouin soliton-like behaviour contributes to stabilize the
Stokes output. It may be responsible of the high spectral coherence for the backscattered
Stokes wave (much greater than the pump coherence) observed in recent experiments
[20] [21).
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1. INTRODUCTION

Nonlinear optical fibres are systems in which nonlinearity and
dispersion give rise to the existence of stable solitary envelope pulses
associated with light at a given carrier frequency [1]. The direct
observability of the formation and propagation of these solitary pulses and
the prospect of their application in long-distance telecommunication systems
has stimulated a large number of theoretical investigations in this field
[2]. Mathematically, pulse propagation in the monomode regime of an
axisymmetric optical fibre can be described by a pair of nonlinearly coupled
nonlinear Schrdédinger equations (NLS). The two complex variables in these
equations play the role of slowly varying amplitudes of two degenerate fibre
modes (i.e. fibre modes having the same propagation constant k for given
frequency w). Unitary transformations of the complex two-component vector of
these amplitudes leave the intensity unchanged but affect phase and
polarisation of a pulse. If the coupled NLS equations are invariant under
U(2)~transformations, then the system is integrable via the inverse
scattering transform [3]. It possesses a multi-parameter family of pulse
solutions which have been termed vector solitons [4]. For real material
coefficients, the nonlinear terms in the coupled equations are not invariant
under U(2)-transformations and the system is not integrable [5]. It does
however possess a multi-parameter family of solitary wave solutions [6]
which may be regarded as generalisations of vector solitons and are, for
special polarisations, identical to them. It will be shown in detail that

material inhomogeneities lead to extra terms in the evolution equations that
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generate unitary transformations of the two-component vector of complex
amplitudes in the linear limit, If the system of coupled NLS equations 1is
integrable, the effect of these terms is trivial, while in the general case,
they give rise to interesting behaviour of pulse propagation in which the

aforementioned solitary pulse solutions play an important role.

2, VARIATIONS OF THE LINEAR REFRACTIVE INDEX

To derive evolution equations for the propagation of envelope pulses in

nonlinear optical fibres, we start from the wave equation

2
VK(VE) + T (e+N[E|D)E = 0 (2.1)
for the electric field E, which we expand in powers of a small parameter v,
E(x,t) = el(kz—wt)ngl o gn(z,t) + c.c. (2.2)

We also introduce stretched coordinates Zn=unz, Tn=unt, where 2z is the
coordinate in the fibre direction. In axisymmetric fibres which are
homogeneous along the z-direction, the linear dielectric constant & and the
Kerr coefficient N depend on the radial coordinate r only and the linearised
system allows E to be a linear combination of the modal fields g+(r,0) of
two degenerate fibre modes which we choose to be of circular pola;isation,
so that
gl(z,t) = aéi Ea(r,ﬂ) Aa(zl’Tl’ZZ"') . (2.3)

In the following, we also take into account small and gradual variations of
€ that may violate the axial symmetry, by decomposing e(§)=£1(r)+62(r,0,z)
and scaling 62=Vm6(r,0,Z2). For m=2, the variations of the dielectric
constant due to inhomogeneities are of the same order in v as its variations
induced by the Kerr nonlinearity. Following the standard procedure of
multiple scales, simplified by the use of compatibility conditions for the
equations of third order in v [7], evolution equations are obtained for the

amplitudes A_ which, after rescaling, take the form

.9 82 2 2
iz=A, = ZraA, + B A, (2)A + ([A "+ hlAL[T)A,

27%+ = 5% (2.4)

’

where we now use the symbols z and t for a length proportional to Z2 and a
retarded time variable proportional to TI—ZI/S, S being the group velocity
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of the linear degenerate fibre modes with &,=0. For h=1, the system (2.4) is

2
integrable [3]. However, for weakly guiding fibres, the material coefficient
h takes values close to 2, and the system is not integrable [5]. The
components of the Hermitian matrix A are proportional to overlap integrals

of the function 6(r,0,22) with products of two modal fields, of the form

Y 27
A=A~ / fo(r) ) 6(r,0,Z2) de dr (2.5)
0 0
A =A* ~ 7 £ (r) 7ﬁ e 21051 9.2.) do dr (2.6)
L 0 7 . .

Due to the symmetry of the problem, the diagonal elements are equal. They
can be different if &6 is allowed to be a tensor. In the absence of
nonlinearity, the matrix A causes the two~component vector (A+,A_) to
undergo continuous unitary transformations. In the integrable case h=1, this
matrix may be eliminated from the evolution equations by transformation to

the variables Bi(z,t)= (z)Aa(z,t) with the unitary matrix R satisfying

agiRai
the ordinary differential equation

d oLk
-igR = AR . (2.7)

If h#1, this is no longer possible. The diagonal elements of A (if they are
equal) may however still be absorbed by a redefinition of phase, so that we

may assume without loss of generality that A++=A__=0.

3. SCATTERING OF A PULSE AT A BIREFRINGENCE DEFECT

We now investigate the effect on pulse propagation of an irregularity
in € causing A+_ to be significantly non-zero only in a finite interval., We

shall call such a localised irregularity a birefringence defect. The simple

functional form A+_(z)=iSexp{—(z—zo)2/w2} with z >>w is chosen, and for z=0,

0
we assume a pulse of the form A+(0,t)=a(0,t)=V§sech(t), A (0,t)=0, where
a(z,t) is a soliton solution of the single NLS equation describing a
circularly polarised mode. In the integrable case the solution takes exactly

the form (A+(z,t), A (z,t))= (cosa, sina) a(z,t), where a=a(z) has the limit

~7Sw for z>>z _+w. The effect of a birefringence defect thus consists in

0
transforming a vector soliton into another one with altered polarisation

which depends only on the product Sw.
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Although the system is not integrable for h#l, it possesses solitary

wave solutions corresponding to simple pulses [6],
. 2
A, (z,t) = 7F, (nt;a) exp(-in”B,z) . (3.1)
The real functions F _(7;a2) are solutions of the ordinary differential
equations

%;ZFi = (B, ~Fi-nFL)F, (3.2)

decaying to zero exponentially as 7-tw, The parameter a plays the role of a
polarisation angle if we define tana=F-(0)/F+(0) and Fi are even functions.
Numerical integrations have been carried out with the above "initial
conditions" at 2=0. Their results suggest that, after passing the
birefringence defect, the pulse evolves into a solution of the coupled NLS
equations being predominantly of the form (3.1), (3.2). This has been tested
by using a consistency relation between ﬁ+ and F+(0) following from the
nonlinear eigenvalue problem (3.2). In addition, superimposed oscillations
and continuous output of radiation has been observed for sufficiently large
S. The numerical integrations have been performed for different combinations
of S and w, but with fixed product Sw=0.2. For h=1, the limiting behaviour

of A+ for z>>z +w is then identical for all these combinations.

Different0 behaviour is found for h=2. Here, two regimes may be
distinguished. For large S and small width w on the length scale on which
nonlinearity and dispersion are effective, the main effect of the
birefringence irregularity is to reset the initial conditions for the

evolution of A+. This is illustrated in Fig. 1, which shows the behaviour of

)
the maxima of |A+(t)| as functions of 2z. This resetting of initial
conditions, and af;o the subsequent evolution, will only depend on the
product Sw., (It should be noted that exchange of intensity between the two
modes can take place only if A+_ is nonzero.) With increasing w and
decreasing S, less intensity is converted from the first (+) to the second
(-) mode and finally, A_ is nonzero only in the neighbourhood of Zg In
other words, the pulse regains its initial polarisation after having passed
the defect, in strong contrast to the integrable case. This qualitatively
different behaviour can be wunderstood in the framework of soliton
perturbation theory (recently applied to similar problems in optical fibres

in refs. [8-11]) based on the assumption that, if w is large on the scale on
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Fig. 1. Maxima of |A+(t)| as functions of z. In all three cases Sw=0.2.

dashed: h=1, w=0.1; solid: h=2, w=0.1; dotted: h=2, w=1.6.

which nonlinear evolution takes place and S is small, the fields A, can be

approximated by the functional form
A (z,t) = n(z) F (9(z)t;a(z)) exp{-i[¢(z)2¥(z)/2]} (3.3)

with parameters 9, a, ¢ and ¥ varying slowly along the fibre. By inserting
this Ansatz into the action integral for A_ and taking the variation with

respect to these parameters, coupled equations of the form

d . d
o= A Kl(a) sin(¥+y) , Fra i K2(a) + A Kz(a) cos (¥+7) (3.4)
are obtained, where A and 7y are the modulus and argument of A+_. In the

integrable case, the term K2 in (3.4) 1is absent. For a qualitative
discussion, we confine ourselves to the case |h—1|<<1. Then, 7 is
approximately a  constant and K2(a)z(4/3)(l—h)nzcos(2a). After a
transformation to linearly polarised modes, coupled equations are obtained
of the form derived earlier for 9=0 and A constant [8,10]. These may be
linearised around the initial pulse parameters to yield driven harmonic

oscillator equations

d? 2

3229 +Q q, = ft (3.5)
for variables q, connected with the polarisation angle a via o ® qz +q_.
The driving forces f, are linear combinations of the real and imaginary

parts of A+_ and their derivatives with respect to z, and the "frequency" is
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Q=(4/3)|h-1|p>. The deviation of h from 1 thus gives rise to a restoring
force that causes the polarisation angle to return to its initial value 0
after the pulse has passed the birefringence defect. This behaviour does not

seem to occur for initially linearly polarised pulses with A+=A_.

With the initial conditions a(0,t)=2y2sech(t) a two-soliton bound state
of the NLS equation evolves. In distinction to the single soliton case, the
effect of a birefringence defect now depends on its location z, relative to
the stage of periodic internal oscillation of the two-soliton bound state.
Results of a numerical integration for h=2 and a defect with width w=0.1 and

strength S=2 at z.=0.78 indicate that as the pulse encounters the defect, it

0
strongly distorts producing a large amount of radiation. In a second phase,
an extensive reshaping of the pulse takes place with lesser generation of
radiation. The internal oscillations gradually disappear and a sharp central

peak emerges with two broad wings detaching from it (Fig.2). Analysis of

45

10 45

Fig. 2. Evolution of IA_I of a pulse initially corresponding to a two-
soliton bound state scattered at a birefringence defect at position

z,=0.78 marked by a little bar.

0
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the moduli and arguments of A, at maximum suggests that the central peak
corresponds to a solitary wave solution of the type (3.1) with (3.2). These
findings compare with earlier numerical results by Blow et al. [12] for a
fibre with constant birefringence, who found that a two-soliton bound state

evolves into a highly compressed single pulse.

4. STRONG BIREFRINGENCE

The evolution equations (2.4) have been obtained with the assumption

that the inhomogeneous part &, of the permittivity is of second order in »

2
(m=2). We now consider briefly the case m=1. In order to keep the multiple
scales expansion uniform [13], we introduce coordinates {j=fj(Z2)/V with

fi(Z2)=A(Z2) and fé(Z2)=A++(Z2). We then perform the transformation
Ai(<11<2,z2,") = i +g (Cl,c ) B (22, .) » (4.1)
where the unitary matrix R has elements

Roo=exp{i(¥ ~0)}/W2 , ¥ == ==¥_+n , ¥_=-( =¥ . (4.2)

Following now the procedure of multiple scales, a pair of evolution

equations emerges for B,, from which all fast oscillations on the scales of

{1 o are eliminated. After rescaling in the same way as in the derivation of
b

(2.4), they take the form
d 0
iz=B, =1 (z)B +iM (z)at L5728 (1+h){|B | +1+h|B | }B+ , (4.3)

where H+ and M+ are real functions. The quantities M+ may be expressed in
terms ;f the _Aaa' and their first derivatives ;ith respect to the
propagation constant k (prior to rescaling). By simple transformations, the
first term on the right-hand side of (4.3) can be eliminated and the group
velocity shifts M+(z) can be arranged to have equal modulus and opposite
signs. For the case of homogeneous fibres, equations of this type have been
obtained by Menyuk [14,15] and pulse propagation in this case has been
studied numerically [15,16] and analytically [11] on the basis of such
equations. For constant M+ the second term on the right-hand side of (4.3)
can be eliminated by a si;ple phase transformation, and the resulting pair

of coupled NLS equations has solitary pulse solutions of the form (3.1) with

altered coefficients in the nonlinear terms of (3.2).
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In the preceding discussions, we have considered symmetry-breaking of
the refractive index which varies gradually (on the scale of Z2) along the
fibre. If the refractive index fluctuates on length scales considerably
shorter than the characteristic length £ for the pulse evolution due to
nonlinearity and dispersion, the effect of such fluctuations is primarily to
introduce effective coefficients in the evolution equations for slowly
varying amplitudes as averages of the fluctuations over lengths smaller than
£. In an approximation, these averages may then be calculated as averages
over an ensemble of different realisations [17]. Gaussian statistical

properties of the fluctuating part €, of the dielectric constant translate

into a Gaussian ensemble for the matrix A. For systems in which €, is of
first order in » and preserves the axial symmetry on average, evolution

equations have been derived for slowly varying amplitudes B, which are

related to A, by a unitary transformation of the form (4.1) [18]. These
evolution equations are of the same form as those in the absence of
fluctuations. However, the coefficients in front of the nonlinear terms

acquire corrections determined by the correlation function <A+_(z)A_+(z')>.
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STOCHASTIC DYNAMICS OF SPATIAL SOLITONS
ON THE PERIODIC INTERFACE OF TWO
NONLINEAR MEDIA
P.Kh.Abdullaev, B.A.Umarov
Thermal Physics Department of the Uzbek Academy of

Sciences ,Katartal Str.28,Chilanzar,Tashkent 700135,USSR

1.Introduction

Currently a problem of nonlinear electromagnetic wave
propagation through a interface separating two dielectric media
attracts much attention. It is caused by the possibilities to
oconstruot optical switchers ,scanners and other optical devices
based on the applications of the beam and surface wave properties
on the interface of nonlinear media.

In [1-4] a problem of interaction of plane self-focusing light
channel in a self-focusing medium with cubic nonlinearity (of
spatial soliton) with interface has been numerically and
analytically considered.The main results of these papers are: there
exist some regimes of complete intermal reflection, trapping and
transformation of a beam into nonlinear surface wave and beam
passing depending upon the incident beam parameters.

The purpose of this work is to investigate nonlinear surface
waves taking into acoount the periodic modulation of the interface.

2.Basic equations

Let us briefly consider a conclusion of the basic equations.
The wave equation describing a propagation of monochromatic
eleotromagnetic TE field in (x-z) plane takes the following form

= -0°K°E , (1)
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2
W

where n°= n% + a|E|2= -1+ 4™ x(1)+ 4T x(3)|E|2]
o'k

is the nonlinear refractive index of the medium, w is the frequency
of the eleotromagnetioc field, Pk is the wave number of the incident
field in 2z, f is the waveguide mode, and k= w/o. X(12 x(B) are the
linear and nonlinear responses respectively, ocharacterizing the
medium properties. We will consider a self-foousing nonlinearities
when x(3)> 0. The eleotromagnetioc field is assumed to be almost
monochromatic in x and z. Let

E = P(x,z) ezp(ifkz). (2)

Substituting (2) into (1), making variable ohange x'=kx, 2' = kz
and omitting a prime, one obtains

2

.q OF o°F
2y -2 Pr-0 (3)

Oz Ox

where refractive index n= n? + ai|F|2 is discontinuous at the

interface. Here the index i = 0 at x < 0O and i= 1 at x > O.
Following [1] in this work we assume that

A=ng—n12>o,a=ao/a1<ﬁ . (4)

Let a wave packet falls on the interface at the right side
( x > 0). Make a variable change

2 2
F(x,z) = (2/a1)A(x,T) expli(f - n1)z/2ﬁ] »T = Pk. (5)

Substituting (5) into (3) one obtains

;0A 0P 5
— + —5 + 2]A["A VA, (6)
ot O&x
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0 R x>0
vV = {

“A - 2(a - 1)]al%,  x<0 .

The equation (6) is the nonlinear Schrodinger equation (NLS) with a
perturbing term V(x)A .At the interface absence a=1,A=0 it follows
that V = 0. In this case the equation is exaotly integrable and
its general solution consists of solitons and nonsoliton component,
which parameters are defined by an initial condition.

A self-focused wave chammel at x > 0O 1is desoribed by a
solitonic solution which takes the following form when the
perturbation is absent.

VX
A(x,7) = 2n, sechl2n, (x-x)] ezpli(—— +20)] . (7

It is clear, that in general case the equation (6) solution is a
rather cumbersome problem but nevertheless, if the medium parameter
changes are assumed to be small,i.e a”1— 1 « 1, A « 1, the
interface influence can be taken into account, considering that the
soliton parameters, velocity v and amplitude Ny s change slowly with
T changing. The equation defining the soliton parameter dependence
upon T can be derived by application of the conservation laws or
the perturbation theory for solitons [1-2,4]. The soliton amplitude
appeared on adiabatic approximation not to depend on T, i.e.

dn/dt = 0, and the velocity changes are described by the following
equation

iz qu
-, (8)
at iz
where
U = A(1 - 877)tanns + (A/3S,) tanh’s . 9)

s=em,X . S, = (8(n,/0)%(a-1)17",
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As seen from (8) the soliton center is moving as a particle in
anharmonioc potential U, and in this case the equation (8) is the
Newton one for a particle, i.e we obtain a quasiparticle analog.
While investigating the potential U properties one can completely
desoribe the beam dynamios. In this case it is necessary to take
into account the velooity v corresponding to the propagation angle
U,v = dx/dt = 2n,9in¥ ,i.e. while considering trajectories with
various initial veloocities on a phase plane, indeed we investigate
a problem of a beam on the at various fall angels on the
interface.

3. Description of quasiparticle motion

Let us oonsider a potential U more detaily.First of all we
start with oritiecal point io where dU/dx=0. With a help of
caloulation we find

en %, = tan ' (18,121,

i.e. X, exists only at 5,< 1.

Let us ocaloulate the second derivative from the potential in a

1/2

= sants, (1-s)"% >0,

i.e. the point io is one of potential minimum. Hence, we have a
oonclusion on existence of stable stationary surface wave, which
center is located in distance of io from the interface. At the
initial velocities being not equal to O, the soliton center will be
a periodioc funotion T. A frequenoy of small oscillations w can be
easlly ocaloulated by potential U(X) expansion near the point x

into degrees ( X - X)) and preserving quadratic terms, we obtain

(o]

U(x) U(io) +
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If one denotes i—io = y, then the equation for particle small
osoillations near a minimum of the potential well is written in the

form

a7y

where @ = 4ArPs®(1-s,)1/2

If the quasiparticle initial velooity is rather different from
zero the osoillations beoome anharmonio ones. Let us consider a
oomplete equation. In this ocase, having integrated the equation (8)
we obtain

> (

2
Let us investigate the potential U(X). The quasipartiole can be
trapped by a potential and make oscillating motion or refleot from
it and go away at +w depending on the initial energy. On the phase
plane there also exists a separatrix trajeotory which separates

osoillating and reflective trajeotories, and the velooity on a
separatrix Vg tends to zero in infinity

2
] = E -U(Z) . (11)

51 &

vy » 0 ,if X =0 .

The equation (11) is integrated in quadrature

X
T(E) = [ [2(8 - 0(E)) 1 ?ax . (12)

X

Prom (12) one oan obtain a period of oscoillations T

%
P = (28 - UE)I T Pax
*n

where im and in are the points in refleotion at the osoillating
motion whioh depend upon the initial velooity.
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Let us investigate a separatrix trajeotory. We write the
equation (11) in the form

1 o _
- v (T) = B - U(x),
2

where

U(X) = a tanhs + b tanh’s ,

a=A4(1-87), b=4/38 .

On the separatrix v = 0 at x=» . We define a value of the comstant
E from these condition

E=a+b. (13)

Substituting (13) into (12) we obtain the equation of motion on the
separatrix

X
-1/2
T = [[2b(1 - tanhs)(tanhs - m)(tanhs - n)] dx ,
%

where

m=-1/2 + (3/2)(1 - 45,/)17%

n=-1/2 - (3/2)(1 - 48,/1)V%
A qualitative motion of the particle on the separatrix oan be
desoribed by the following way: in a moment T = - the partiole
is loocated at the point x =-w with the velocity v = 0, then it

moves to the left and in a moment T =0 it Is refleoted at the point
s=tanh 'm, then it goes far away at X = +o.The velooity on the
separatrix is an odd function T , a coordinate is an even funotion
from T .
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4. Soliton motion along modulated interface

Let us describe soliton propagation in the case when the
interface is periodically modulated. In this case the perturbation
potential takes the form

V, = 6(-x + £ atnOt)[-A + 2(a ~ 1)[4]%] ,

1
where £ 1is the amplitude of the modulation, 2 is the frequenocy of
modulation. The equation of soliton motion in a potential takes
the following form

a°z

o = —(2An1sechas’ + 16n$(a - 1) sechts")

(14)

8' = 2n1(i - & glndlt).

Let us assume that € « 1 and expand a function of the right hand
of the equation (14) in the series in small parameters and preserve
the Zfirst order terms . In this case we obtain the following
equation for X

+ g£(X) 8in QT , (15)

Xl
il e

where f(X) = - 1(a®U/a5%) = 4Amfisech®s tanhs(1- 28,sech’s).
2

At & =0 the equation (15) is reduced to equation having been
investigated in [1]. At € « 1 the second term from the right hand
(15) can be taken into account as a small periodio perturbation. As
known, during the periodic perturbation influence upon the partiocle
moving in anharmonic potential there arises a whole number of new
physical phenomena, such as higher harmonic appearance, nonlinear
resonances, phase oscillations, and under ocertain oonditions,
nonlinear resonance interaotion and chaotic motion. An estimate of
chaotlc layer width near the separatrix can be found applying the
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Melnikov funotion [5], that in our case takes the form

+00

D(t,) = € [ sin[Q(T - 7,)1£(x) v(T) dT ,

—00

where X =

x(T) is the separatrix trajectory. Applying
v(-T) = -v(T), X(~T) =

= X(T),and expanding sin[Q(T - T,)1 we oan
write for D(TO):

+00
D(T,) = 2€ co3(Qt,) J sin(QT)f(x) v(T)dT .

0]

Let us make variable changes v(T)dT

= dx .
Then
400
D(T,) = 2¢ cos(ﬂmo)f sin[QT(x)1f(x) dx ,
n

x = (en,) “'tanh'm.

As known,the ochaotic motion arises if the Melnikov funotion has

infinite sets of zeros and this condition is realized in our oase.
The coefficient

+00

ID] = 2g [ sin[QT(x)]1f(X) dx,
Xm
defines

a stochastioc layer width. In FPig. 1 the dependence |D|
on {1 for speoific values is presented.
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Fig.1.Dependence of the stochastic layer width versus
modulation frequenoy at A = 0.1, a = 0.5, 2n1 = 1.264, &€ =0.05.

As seen, |D| is rapidly decoreasing with inocrease of {} and has a
maximum at the frequency 2 = 0.55. If the angle of the inoident
wave 18 looated within the stochastio layer, then a ray is firstly
trapped by the interface, slides along the interface for some
distance, and the beam center is nonlinearly oscillating, then it
reaches a region of chaos and refleots from the interface.
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CONVERSION OF ULTRASHORT OPTICAL SOLITONS
IN THE FIBRE-OPTICAL LOOP
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1.INTRODUCTION

Different types of the fibrec-optical c¢lements have been proposed
and designed reccently for ultra-short pulses selfswitching and
ultra-fast all-optical light control. One of such constructions is
so~called fibre-optical loop mirror {1] -~ all-fibre Sagnac intcr-
foromecter based on the single-mode directional coupler with two output
ports linked by long (in comparison with coupler length) single-mode
fibre. In this device some effects were observed: self-switching of
the ultra-short pulses in the soliton {2] and non-soliton [3] regimes
of propagation:; pulse shaping {4] and cross-switching [5] in the
non-soliton regime.

But actually fundamentel solitons (with energy and duration
connected by fixed relation) haven't been described in the
fibre-optical loop. Othcer authors varicd oencrgy of the pulses at the
input of the loop without changing of the pulse duration. Herc some
possibilities of the conversion of the fundamental soliton in the
fibre-optical loop arc demonstratcd: fundamental soliton selfswitch-
ing, its filtration from the background, and ultrashort pulse
gcnoration from the CW radiation due to cross~phase modulation {(XPM)

of this radiation by the fundamental soliton in the loop.

2.LOOP CHARACTERIZATION

Fiber-optical 1loop is the two-beam interfoeromecter, in which
radiation passes through the coupler then, after splitting, propagates
along opposing directions in the loop fibre and at last returns back

to the coupler and interferes there. One part of the radiation passes
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to the output of the loop the other comes back to the input fibre. The
main advantage of this configuration is the scparation of the process
of the nonlinecar interaction in +the long optical fibre from the
interference in the short single-mode directional coupler. It gives a
lot of possibilities for varying of the working characteristics of the
elements in the wide region.

After the travelling around the loop the radiations have the
phase shift consisted of two parts. One part - the common linear phase
shift, the same for both radiations because their optlcal paths are
the same. The other - nonreciprocal phase shift which could exist due
to the nonlincarity. One coeuld take into account only the phase dif-

ference 5@ and receive the normalized transmittivity of the loop [61]:
2
§ = ﬁo + (1—ﬁ0)-SIN (89/2) (1)

Where ﬁO = (2(1—1)2 - transmittivity of the loop when one could neglect
the phase difference 6@, d - the coupling coefficient of the coupler.
As it follows from equation (1), loop transmittivity takes on a
maximal value § = 1 when 8¢ = (2m+1)*%, and minimal f .,
max min

5@ = 2mN%, where m = 0, *1,... ; and switching betwcen these values is

= po when

possible under varying of 0@.

This analysis is valid for short squared pulses with constant
amplitude. For the real bell-like pulses., transmittivity varies along
pulse due to varying of the 6@, and pulse could be broken-up or not
switched fully [4]. Since optical solitons [7] are the most convenient
carrier of the information in such devices due to their quasi particle
propagation with constant phase along whole pulse, which makes high
contrast and avoidance of the pulse break-up under switching.

Soliton passage through the loop we have described in detail in
[6]. Here we concentrate our consideration on soliton filtration from
the background.

There are two possibilities for +the arising of the phase
difference 5@ in the loop due to nonlinecarity. The first - self-phase
modulation of tho nonequaled parts of +the pulsc propagating in the
opposite direction, and the second - different phase shift of the
equal counter propagated parts of the CW or quasi~CW radiation due to
XPM from co propagated noncqual parts of the short pulse. Consequently
at first we will discuss single soliton passage and self-gwitching in
loop and then soliton interaction with CW or quasi CW radiation at the

different wavelengths.
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3.SOLITON PASSAGE THROUGH THE LOOP

L.et’s suppose that s5oliton amplitude at the input port of the
coupler is doscribed by the expression: qo(T)=SECH(T) where T = t/TO -
normalized on the soliton duration TO time t. After the coupler and
sufficicently 1long fiber (I, - fiber 1length is much greater than

dispersive length of the initial soliton Ld = Tg/(@zk/awz)) the new

perturbed soliton with the formfactor Wl = (2/ QA -1) is formed [81]:

a(t) = azl-sgcmazl't)-E,X’P(ia!fﬁ/Z), (2)

where £ = L/Ld' This expression is valid only if 0>0.25 (WI)O).
otherwise the soliton is not formed and the waveform is dispersed.

As one could see, two different cases are possible. The first:
A > 0.75 or 00 < 0.25 when only one soliton is formed in the loop. And
the second: 0.25 < 0 <0.75 when two counterpropagating solitons are
formed and switching take place.Consequently we'll consider this two

different cases secparately.

3.1.50liton filtering from the background (0 > 0.75)
In this case the soliton forms, after +the coupler, anothor
perturbed soliton, propagating only in onc direction in the loop and

switching is not the case. At the loop output, immediately after the
coupler, the pulse is formed: q (T) = Wlﬁ a 'SECH(WlT). Then, after

sufficiently long fibre, the soliton q{(T) with formfactor W:(Z/cgﬂ—l)z
is formed. The duration T and the encrgy E of this soliton are
connected with initial ones: T/T0 = W—l; E/EO = P = & In the
calculations we neglected the nonsoliton part of the radiation. It is
right, when L # Ld and the intensity of the nonsoliton radiation is
criticelly weaker than soliton intensity.

When the O value is unsufficient for the solitom formation in
"d"-channel, then soliton is formed in "1-0"-channel. So, in this
case, we can exchange in all formulas @ with 1-0. Besides, it is c¢lear
that for the loop all dependencies with 0 are symmetrical relatively
to the point 0 = 0.5,

It should be noted that all this formulas are indopendent from
the loop length. It is due to the fact that soliton doesn't changes
its shape and energy undor propagation in the sufficiently long loop.

The depondence of the loop transmittivity en O in the linear case

and for the fundamental solitons is shown in Figure 1. The linear loop
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transmittivity 60 is representcd by parabola. The correlation ﬁ > ﬁO
shows that the soliton transmittivity is greater than lincar one even
without switching. Conseguently the loop filtrates valid solitons from
nonsoliton background.

Figure. 2 presents the intensity profile of the initial soliton on
the continuous background (0.1 of the soliton amplitude) and
normalized intensity of the soliton formed after the loop in the "far
field” at @ = 0.75. It is also shown pulse, formed immediately after
the loop. One could sece that relation between intensities of the
background and soliton approximately equals to initial one. But
relation betwecen energies - really registered values, is in two times
greater due to increasing of soliton width. So in this case ‘{(without
switching) it is possible to make contrast soliton - background higher

in two times.

BorP

+ Norm.int,

1.0

SOLITON

LINEAR
0.0 ' ~ s
0.0 0.25 0.5 a

Fig.1: Loop transmittivity vs a.
» Fig.2: Soliton envelope before and
after the loop (a=0.75).

3.2.Fundamental soliton switching in the loop (0.25 < @ <0.75)

In this case the counterpropagating solitons are formed in the
loop and interferes in the coupler at the output. When O#£0.5 the
solitons amplitudes in the loop arc different and the solitons phase
differcnce exists and we have +to take 1into account this phase

differcence. Solitons phase difference o@ is expressed as (sece (2));

8¢ = 2-(2a—/faﬁ+/ 1-0 -1)<§ (3)

The deopendence ﬁ(a) i nonmonotonous and more complicated then in the
"nonswitching” regions due to the lcngth dependence of the 6@- The
maximal and minimal valucs of the ﬁ may be calculated (with taking

into account conditions for the GQ) by the expression:
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r—"ﬂ ————y
(ay = E/E. = a-(2/ a -1) + (l—a)-(2/f1«a -1) *
0
(4)

—

e r— e
o/ a(1-a)y-(2/ a -1)-(2/ 1-a -1)-]

where I = IlSECH((Z/raﬁ—l)T')'SECH((Zf 1-Q -1)%°)}d%’. Upper sign in
(4) corresponds to maximal ﬁ, lower - to minimal. The results of
calculations are presented at Figure 1 at 0.25<A<0.75 and at Figure 3.
It should be mnoted that _ Norm.int.
there is one singular point at
ﬁmax curve. When A exactly eguals
to 0.5 the same portions of the
initial pulse e¢nergy propagated
in both directions, their nonli-
ncar phase shifts cquals and
5@:0. Consequently ﬁmaxzﬁmin:o'
The lJoop transcmittivity

depends on the phase difference

8¢ which varies with the input

solitons energy variation. The
energy and time duration of the Fig.3 Soliton envelop before and
fundamental soliton are conneccted after the switching (a=0.45)

by the relation: BT = cownsT (7].

When the energy varies, the time duration and dispersive length of the
soliton varies too. So, under fundamental scliton energy variation at
the input of the loop, the normalized length of the loop E = L/Ld and
phase difference 6@ varies too. But when 6@ varies the loop
transmittivity changes betwecon maximal and minimal value and i.o. the
self switching could take place.

The ratio of the maximal and minimal ﬂ gives the switching
contrast K = ﬂ /ﬁ . which could be achieved at given @. The

max’ ' min
contrast K is maximal near the point @ = 0.5. In this region the
parameters of the solitons, formed in the loop, are close to each
other. So the envelops of the solitons are practically the same and
switching with high contrast could be achieved.

When (A=0.45 the maximal switching contrast equals to K=30. To.
observe at this @ the soliton selfswitching between m-th maximum and
minimum the normalized loop length must equal & # 30'm*R. In this case
the selfswitching would be observed for the solitons with energy
relation KO # 1 + 1/(4m). These relations are received from (3) and

(4). When m=1 then £ % 100 and K0 % 1.25, and when m = 5 then § ® 500
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and KO # 1.05. So, when the loop length is equal L. = 500L one can

sort with contrast E = 30 solitons with initial energy diff;ience only
about 5%. The real loop length L is about 100 + 200 meters for the
solitons with duration of about 100 fs.

We have donc somec experiments on the fundamental soliton
transmission through the fibre-optical loop based on the fused tapered
coupler {6]. At Figurc 1 exporimentally measurcd transmittivity and at
Figure 4 the depondence of the time duration of the formed after the
loop solitons are shown . Good agreement botween experiment and nume-

rical estimations confirms correctness of the theoretical model.

4 .SOLITON INTERACTION WITH CW RADIATION IN THE LOOP

¥hen O = 0.5 (the symmetrical coupler) the amplitudes of the
counter propagated radiation equals each other and ﬁ = 0 , i.e. the
radiation returns back to the input fiber. Nonreciprocal phase shift
could arises under interaction of CW radiation (wavelength hl) with
the short pulsc (ho). propagating in the loop in one direction. Due to
XPM this pulse lecads to additional phasc shift 80 to the CW radiation
propagating in the samec direction. The optimal pulse for modulation is
soliton duc to its constant form.

If soliton duration 15 shorter than loop round +trip time the
phase distortion in the counter - propagating wave will be negligible.
If the loop length is sufficiently short, then phasec modulation of the
C¥W radiation will not transform to the amplitude one. In this casec to
calculate output signal we can take into account only phase
correlation. This situation could be realized by using
spectral~selective coupler with coupling coefficicent wvarying with
wavelength: GO(KO) = 1, al(hl) = 0.5. Under these conditions pulse is
formed from the CW radiation and its intensity envelop is described by

the following expression:

1(T) = T,-SIN°(3Q(T)/2) (5)
where I1 - initial intensity of the CW radiation: and
T
STy = m-’n-[ SECH®(T') T’ (6)

-7

where n=41n210L/A1; T:AL/TO; n, - nonlinear refractoed index; Io - peak
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intensity of the soliton, L - loop length; A:(l/uo—l/ul): uo‘1 - group

velocities at the wavelengths KO and Kl' The formed pulse is of

minimal duration and maximal intensity at the conditions: M=% and 7T=0:
(%) = Il'SINz(W-SECHZ(T/Z)) (7)

These conditions arce satisfied when ug = u
When the parameter N grows, formed pulse i

L and L = L,R-(A /A )/2.
s splitted to some peaks.
VYhen T#O thcn pulse amplitude decreases and duration grows due to
soliton sliding with respect to CW radiation. Asymptotical (at high T)
dependence of the pcak intensity I and FWHM time duration T are

connected with initial ones by the following expressions (1 = %):

/1, = /72 T/ty = 1 - 0.884

Optimal conditions of the pulse formation (7 = 0) could be
obtained under interaction of the so0liton in the negative dispersion
region with the CW radiation in the positiveo dispersion region of the
single-mode fiber. Let us suppose that soliton with duration 200 fs at
the wavelcngth 1.6 lMm (Ld % 80 cm). Let's suppose that group veloci-
ties of the soliton and CW radiation at 1.064 Um are the same. In this
case modulation is optimal (7} = %) at the L = 80 cm.

Analytical approximati- ¢I/Iin erO
on is5 good for cstimations
but is not valid when loop 1.0
length is not sufficiently
short and one have to take
into account dispersive evo-
lution of the CW radiation
due to the XPM pbasce. To 0.5%
receive more realistic resu-
1ts computer simulation have
been done. Figure 4 shows

results of this simulation.

-
v

Very interesting featu- 0.0
re of the gencerated pulse is

the practically linear chirp

within all pulse at the loop -1
lengths L/Ldﬁx/4. At the 4

longer length the chirp be- Fig.4 Soliton (1), genserated pulse (2),
comes lower and curved in and compressed pulse (3) at Y=0,
the central part of the N=%. Dashed line - pulse chirp.
pulse. When the chirp i5 1lincar through all pulse, it could be
effectively compressced without any wings [9]. Compressed pulse at the

loop length L = Ld-W/4 is shown at Figure 4.
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When the intensity of the CW radiation is greater than soliton
intensity it is necessary to take into account XPM by CW radiation to
soliton. But at the loop length about L/Ld=W/4 the parameters of the
formed pulses are approximately the same as at low intensity

radiation.

5.CONCLUSIONS

All the results mentioned above are connected with the fiber-
optical loop mirror - Sagnac interferometer based on a single coupler.
By using two or more couplers one could receive more complicated
device in which could be realized another types of the fundamental
soliton conversion and radiation handling. In Mach-Zehnder interfero-
meter [1], for example, thero are two couplers and two fiber arms and
it is possible to form dark or programmable ultrashort pulses from the

CW radiation under soliton XPM.
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DYNAMICS OF BREATHER MODES IN A NONLINEAR
“HELICOIDAL” MODEL OF DNA
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ABSTRACT: Via a recent model with an additional helicoidal cou-
pling, the dynamics of breathers modes in DNA are studied analytically
and with the use of numerical simulations. It is shown that these excita-
tions are longlived and can match experimentally observed fluctuational
openings.

1. INTRODUCTION

Biological macromolecules undergo a complex dynamics and the
knowledge of their motions provides insights into biological phenomena.
Recently, attention was focused on dynamics of large amplitude localized
excitations in DNA [1-4], in which the double helix fluctuates between
an open state and its equilibrium structure. These oscillatory states,
also called breathing modes[s5] or fluctuational openings, are expected
to be precursor states for the local denaturation observed during DNA
transcription or thermal denaturation. In these studies, the molecule is
modeled by two parallel chains of nucleotides, linked by nearest neighbor
harmonic interactions along the chains and the strands are coupled to
each other by Morse potentials which represent the bonding inside one
base pair. Such a model does not include the helical geometry of the
molecule.

But, one of the consequences of the helical structure is that nu-
cleotides which are far apart in the one-dimensional model can be close
enough in the three-dimensional structure to be connected by hydrogen-
bonded water filaments. These strong water filaments has been suggested
by indirect experiments[6] and results of Monte Carlo simulations[7]. They
connect a phosphate group P, at one side of the major groove with an
another phosphate group P,14 at the opposite side. Therefore, in order
to take into account the presence of this dynamically stable filament, the
model must include a coupling between the nth nucleotide on one strand
and the n + h one on the other (h = 4 according to the experiments).

Such an extension was carried out by Gaeta[8], but he considered only
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its consequences on the dispersion curves of the small amplitude excita-
tions of the molecule. We consider here the nonlinear excitations in the
extended model and show how the additional coupling increases the abil-
ity of the molecule to bear rather broad and sufficiently large amplitude
breatherlike modes, which propagate easily along the molecule.

2. MODEL

In our model we consider a simplified geometry for the DNA chain in
which, we have neglected the assymetry of the molecule and we represent
each strand by a set of point masses wich correspond to the nucleotides.
The characteristics of the model are the following:

(1) Like Peyrard et al[1), we only take into account transversal motions.
The displacement from equilibrium of the nth nucleotide is denoted u,
(respectively vy) for the chain Cy (resp. Co).

(ii) Two neighboring nucleotides of the same strand are connected by
harmonic potential because we assume that the displacements due to the
bubbles change only gradually from one site to the next. On the contrary,
the bonds connecting the two bases belonging to different strands are
extremely stretched when the double helix open locally: their nonlinearity
must not be ignored. We use a Morse potential to represent not only the
hydrogen bonds, but the repulsive interactions of the phosphate, and the
surrounding solvent action.

(iii) Finally, we add to the model introduced by Peyrard and Bishop, a
harmonic coupling which takes account of the helical geometry discussed
above. It connects the nth mass on the chain C; to both the (n + h)th
and (n — h)th masses on chain Cj.

Therefore the Hamiltonian is written as
H=% [%mwz i) [ = s (00 = 00
2
TS| IRV (AP A

where the four terms are respectively the kinetic energy of transverse
vibrations, the potential energy of the longitudinal, transverse (analog to
a substrate potential) and helicoidal connections. Here k (respectively
K) is the harmonic constant of the longitudinal (resp. helicoidal) spring,
m the nucleotide mass and D (resp. a) the depth (resp. width) of the
Morse potential.
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Using the variables z, = (un + vn)/\/f and y, = (up — vn)/\/i,
which represent the in-phase and out-of-phase motions respectively, the
dynamical equations are then:

mE, = k(xn-{-l +ZTp_1— 2xn) +I{(xn+h + Tp_p — an) (2)

Myp = k(yn+1 + Yn-1— 2yn) _I{(yn-{-h + Yn—n + 2yn)
+2v2aD(e VW — 1)e=*V2un  (3)

The two equations decouple exactly and we find two linear dispersion
relations (an acoustical and an optical branch). The introduction of the

new coupling affects the spectrum(9], by increasing the frequencies and
introducing oscillations in agreement with Gaeta’s results|g].

3. BREATHER IN THE SEMI-DISCRETE APPROXIMATION

Let us focus our attention on the nonlinear equation (3), which in-
cludes the only degree of freedom interesting for the local denaturation:
the stretching y, between two nucleotides of different strands.

We are interested in collective oscillations which are large enough to
be strongly anharmonic, but still much smaller than the motions which
result in permanently open states, where the nucleotides reach the plateau
of the Morse potential. In this hypothesis, the atoms oscillates near the
bottom of the potential well, so that we assume y = £¢ (where ¢ < 1)

and expand the substrate potential to fourth order terms in e¢. The
equation of motion is then:

b= E(fnt1+Pn-1—20n) —LE(Gnin+ bnn + 2¢n)
—w?(¢n + adle + fo3e?)  (4)

by setting wg = 4a?D/m, a = —3a/v/2 and B = Ta?/3.

According to the experimental results, the problem implies two times-
scale: one corresponds to the vibration of the particle around its equi-
librium position and the second, much larger, to the propagation of a
collective coherent stucture along the chain.

So we will use the reductive perturbation method in which we expand
in the small parameter € and, using 8, = qgnf —wt (where w is the optical
frequency of the linear approximation and £ the distance between adjacent
nucleotides on the same strand), we substitute



82

bn(t) = [e [F1 (ent, et)ei®» +€2 (Fo (end, et)+ Fy(ent, et)emn)] +ectO(ed)
(5)

in (4) by using the semi-discrete approximation[10} (the complete contin-
uum limit would be too restrictive for DNA, where discreteness effects
may be important).

Indeed, as we limit ourselves to large enough width excitations, we can
determine the envelope in the continuum limit, as function of the slow
variables Z = €z et T = et, while the fast oscillations of the quasihar-
monic carrier, inside the envelope, are treated exactly. Equating the co-

efficients of ¢ for each harmonic, we get Fy = p |Fi|? and Fy = § F2, and
finally obtain the Nonlinear Schrédinger (NLS) equation for the envelope
function Fj:

where we have made the transformation 7 = €T and S = Z — V| T,
with the linear group velocity V, = ¢ [k sin(gf) — Kh sin(qhﬁ)] /mw,

the dispersion coefficient P = [62 (k cos(qf) — K h? cos(qhﬁ)) J/m— V;Jz] /2w
and the nonlinear one Q = —~w2[20(p + 6) + 34]/2w.

We will briefly discuss the stability of analytic solutions of NLS, which
depends on the signs of PQ. However, to simplify this study, we expand

these quantities to first order terms in ¢ (a numerical study shows that the
results of the stability discussion are almost unaffected by this expansion),
since in next section we limit ourselves to large width bubbles, ie ¢ < 1.

In this limit, P has the sign of (k — Kh?) and @ of (1 — 7K/8a2D).
Therefore the solutions changes qualitatively, depending on the value of
K. PQ is negative for k/ h? < K < 8a%2D/7; in this case, the solution of
(6) is a finite amplitude plane wave with a dip near S — u.7 ~ 0, called a
dark-soliton (or a enveloppe hole), which does not correspond to the small
amplitude limit of breather modes. For 0 < K < k/h? (this case includes
the usual model without helicoidal coupling) and 8a2D/7 < K, PQ is
positive; we have plane waves solutions, unstable because of modulational
(or Benjamin-Feir) instability, and a localised envelope solution, with a
vanishing amplitude at |2| — oo: such a solution has the appropriate
shape to represent breathing modes in DNA.
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Therefore, the solution of (6) is then:
1 . Ue
Fi(8,7) = Asech[7-(S — uer)] explig5(S — wer)] (7)

with u, and u. the velocities of the envelope and carrier waves, the am-
plitude

A= /(u? - 2ucu.)/2PQ and the width L, = 2P/+/u? — 2ucu,.. The en-
velope soliton, solution of (4), is a plane wave with a frequency corrected
for the nonlinearity, an amplitude modulated by a sech-type envelope
modified by the second harmonic and the non-oscillating components.
By setting V. = V, +€ue, © = g+eu /2P and Q = w4 (Vg +uce)eue /2P,
it reads:

Yn(t) = 2e Asechle(nl — V.t)/L,] [cos(@né ~ Qt)
+eAsechle(nl — Vet) /L] x (y/2 + 6 cos[2(Onf — Qt)])] +0(e?)

When K < k/h2, we obtain a very narrow pulse, almost identical to
those found in the model without helicoidal interactions[4] (because K

approaches 0). On the contrary, when K > 8a2D/7, the solution is much
broader and has a larger amplitude so that it could provide a better rep-
resentation of the fluctuational openings of DNA. We have investigated
its stability numerically.

4. NUMERICAL RESULTS

The lifetime of the solutions determined above is an important param-
eter, because only long-lived excitations can be detected experimentally.
First we discuss briefly the numerical technique, and then we compare
the numerical and theoretical results.

Basically, we perform the simulation by using a continuum breather
as an initial condition in the discrete lattice, with the complete Morse
potential. Then, we simulate the ensuing propagation of the pulse, solv-
ing the Newtonian equations of motion with a fourth-order Runge-Kutta
method. The timestep At is chosen so that the total energy of the system

is conserved to a relative accuracy better than 1073.

The question of the choice of parameters for this model is still a
controversial topic, as shown by the debate over these values in the
literature[11. We have chosen a dissociation energy D = 0.1 eV,

a = 2 A~1, coupling constants k¥ = 1.5 eV/A? and K = 0.5 eV/A4?, a
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distance between base pairs £ = 3.4 4 and a mass of 300 m.u. for each
nucleotide. To generate the bubbles, we choose a small value for the wave
vector (¢ = 0.01 A~!) and therefore th wavelength of the carrier wave is
in the range of the envelope width: the solution is similar then to a local
opening which oscillates.

As long as the amplitude remains in the region where the Taylor’s
development is justified (typically where y is lower than the Morse po-
tential inflection point), our approximations are valid so that the solution
can be expected to be stable. In order to describe the large amplitude
fluctuational openings observed in DNA, we must however consider initial
conditions with a larger amplitude.

The figure 1 shows the motion of a breather with an initial amplitude
of 1 A and a half-width of 18 nucleotides. We can see that, when the
motion begins, the amplitude adapts to the real substrate potential. The
figure exhibits an amplitude modulation not explained by the calculations
performed in the limit of small displacements, ie in the bottom of the
Morse well.

1.5'IIIIIITIIIIT

_1llllll!lllllll,

0 200 400 600
TIME (ps)

Fig 1: (v — v) vs time for the center of the breather (¢ = 0.007, u, = 10°

A/ps and u. = 0 A/ps). The figure contains about 1000 oscillations of
the breather.
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1.1 A

n=1000

Fig 2: Propagation of the breather along the chain (only 1000 nucleotides
are represented). The transverse stretchings are shown every 250 oscilla-
tions, when the position of the breather center is at its maximun. Note
the assymetry of the backward and forward radiation patterns.

Figure 2 shows these excitations to be very long-lived, although some
radiation is emitted by the breather. In spite of this radiation, it should
be noticed that the decrease in amplitude is only very weak.

In order to analyse the emitted waves, we have studied the amplitude
of the stretching at a distance of 100 particles away from the center of
the breather. After the first burst due to adaptation, the radiative rate
decreases, and finally corresponds to a permanent emission of resonant
phonons. Indeed, a temporal Fourier transform of the same simulation
data, started at ¢t ~ 400 ps, shows that the frequency of the breathing
oscillation wg = 11.20 ps~1 is about 1 % higher than the analytical
value; the frequency of the radiated phonons is wp = 10.97 ps™!, which
coincides with w within 0.2 % and attests the coupling mechanism of the
breatherlike motion to phonons radiation.

The position of the frequency in the bottom of the dispersion relation
(Vg =~ 0), explains the slow speed of the radiations packets, compaired to
the speed of the burst due to adaptation. Besides, the propagation speed
of the breather V, = 3.7 A/ps, is about 20% less than the theoretical

value, because of the discreteness effects which usually tends to slow
down the motion.
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5. CONCLUSION

Our primary aim was to construct a new extended model for the
coherent dynamics of bubbles in DNA. We considered, on one hand,
first-neighbour harmonic longitudinal and nonlinear transverse interac-
tion and, on the other hand, an harmonic helicoidal coupling, due to
transgroove hydrogenbonded water filaments. Then envelope solitons,
solutions of the NLS equation were obtained using a perturbation ap-
proach and simulation results were used to show the coupling mechanism
between the motion of the breather and phonons radiation. Note that
the addition of the helicoidal term, introducing modifications in P and
Q, has created a special zone without breather modes. We emphasize
that this model can have large amplitude broad oscillations which better
correspond to the fluctuational openings of DNA, whereas the previous
model with similar parameters cannot.

Nevertheless, it is obvious that before obtaining a suitable descrip-
tion of DNA, we have to take into account the local assymetry of the
two helices, as well as the second principal source of nonlinearity which
appears as DNA chains unwind: the bistability of the sugar ring, which
allows sugar puckering modes.
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Experimental and theoretical studies indicate that the hydrogen bond stretch
mode dominates DNA dynamics close to denaturation temperatures. We analyze
a simplified model for DNA which retains only this (nonlinear) degree of freedom.
The dynamics and thermodynamics of the system are discussed. In particular, the
analytical and numerical results do not exhibit a melting transition but instead
a state of pseudo-equilibrium distinct from the state expected from equilibrium
thermodynamics. Finally numerical results show that energy transport is unlikely
at biological temperatures.

I. THE MODEL

Deoxyribonucleic acid, or DNA, is conceivably the most important biomolecule. Its
double stranded helical structure is of particular interest since the four bases (Adenine,
Thymine, Guanine and Cytosine or A,T,G and C), whose sequence determines the
genetic code, are projected inward toward the helix axis. On the outside of the double
helix is found the backbone formed by two strands consisting of alternating phosphate
groups and deoxyribose sugars. An excellent overview of DNA structure and function
can be found in Saenger.! As such, the geometry of the double helix requires that the
two complementary strands come apart in order for the base sequence to be read by
other molecules. This melting, or denaturation of DNA has been the study of intensive
experimental and theoretical investigation because of its biological importance.? In the
present paper we present the motivation for a very simple model of DNA along with
an analysis of its thermodynamics.

The infrared transmission spectrum of DNA has shown the existence of soft mode
around 85 ¢m™1.® This mode is seen to drop in frequency as the melting temperature
is approached. Using normal mode analysis Awati was able to characterize this mode
as a collective motion of the bases that stretch the interbase hydrogen bonds (HBs).*
With the use of the Modified Self-Consistent Phonon Approximation, MSPA, he was
able to predict the temperature dependence of this mode along with the fact that it
also gained further HB stretch character as the melting temperature is approached.*
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The following simplified geometry is considered for DNA; the molecule is first un-
twisted and each strand is then represented by a set of point masses (the nucleotides)
connected by linear springs. The intrastrand interactions (i.e. the HBs between base
pairs) are modeled by a Morse potential. Schematically this can be represented as
in Fig.1(a). The displacement from equilibrium of the n** mass point is denoted by
un(v,) in the top (bottom) chain respectively. Only transverse motions are considered.
The equations of motion for u,, and v,:

7]

mi, = k(uﬂ.-H + Upo1 — 2un) - _a('u' f " )v (1)
7]

mﬁ,‘ = k(‘U,H.l + Upel — 21),‘) + __—6(‘u f ‘U ), (2)

where ¢ is the non-linear potential describing the HB interaction. At this point, it
should be emphasized again that the source of the nonlinearity in the model lies in
the coupling between the strands not between adjacent particles on the same strand.

(a)

(b)

Figure 1

Since the individual masses of the four different nucleotides differ by at most 13%, the
masses of the particles on each strand have been made equal in the above equations.!
Furthermore, for the sake of simplicity, it has been assumed that the force constants

k are the same throughout the chain. These assumptions permit a transformation to
center of mass coordinates:

1

z,:\—/_-i(u,‘ + vn), 3)
1

Yn= 75(”1» - 'Un), (4)

Eqns.(1) and (2) become:
min = k(zn-t-l + Zp-y — 2zn)v (5)

MY = E(Yn+1 + Yn-1 — 2¥n) — 5—- (6)
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., is the motion of the center of mass and y, describes the motion about the center of
mass (a positive yn represents a stretch). The potential energy ¢ is chosen to model
the nonlinear HB interaction between base pairs. This is typically done by using the
Morse potential:

¢M(yn) = VOO(l —e 2ay")2’ (7)

which, with suitably chosen parameters, can provide a good description of HB poten-
tials in DNA.These equations may be obtained from the following Hamiltonian:

Z + (zn+1 mn)z'*’ + (yn+l —yn) + Ve [1 _exP( \/—ayn)]z
Em+m. (8)

We note here for future reference, that H, can be viewed as an ensemble of Morse
oscillators with nearest-neighbour harmonic coupling in the displacements and that in
the limit £ — 0 we have an ensemble of independent Morse oscillators. The equations
of motion are now uncoupled. Eqn.(5) represents a pure harmonic lattice with plane
wave solutions. In what follows, all the attention will be focused on the motion about
the center of mass Eqn.(6). This equation can also be viewed as describing longitudinal
displacements in the one-dimensional chain shown in Fig.1(b). An analysis of the
dynamics of this model has been presented elsewhere.®

II. EQUILIBRIUM THERMODYNAMICS

An initial attempt at calculating the thermodynamics for this model was presented
by Peyrard and Bishop in 1989.% Their idea was to apply the transfer integral method
to evaluate the partition function in the canonical ensemble.” Here we will show that
strictly speaking this approach is incorrect due to the fact that the Morse potential is
bounded for large stretches. To make this statement as clear as possible we consider
first an ensemble of independent Morse oscillators i.e. H, of Eqn.(8), in the limit
k — 0. H, then becomes:

H, = Z +V[1 exp(—+v/2ay,)%. (9)

In order to calculate the thermodynamic properties in the canonical ensemble, the
usual procedure is to calculate the partition function Z,: 8

1 e X
Zy:ﬁ/;@ I;[ dyndQnexp(—ﬂHy)a (10)

i
stz

1 (2mm
ﬁﬁ( ] ) I"(~00, +00), (11)
where

H(=o0,400)= [ dyn exp {~BVault — exp(—VEarn)*} (12)
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and where N is the number of particles, 8 = 1/kpT and the integration is performed
over all the available phase space i.e. y, € (—00,400). Everything appears to be in
order until one notices that for y, — +oo the integrand in Eqn.(12) is bounded. In
other words,the integral I(—oo,+00) and consequently the partition function Z, are
divergent! Furthermore, if one considers

lim I(—o0,y), (13)

Yu—+oo

it can be shown that the divergence is linear in y,, meaning that the integral diverges
linearly with volume. This result per se may not be distressing since the partition func-
tion has no direct physical meaning, however on further examination the consequences
become clear. Consider the average displacement from the Morse well , < y,, > (which
for nonzero values of k in Eqn.(8) represents the average HB stretch of a base pair in
the molecule), for a given particle in the ensemble:

1t N
<Yn>= m / H dyndgn Yn exP(—:BHy)
y ~00

n=1

_ [ff:: dyn ynexp {'-,BVOO[I - eXP(—\/Qayn)]z} ! . (14)

I(—o0,+00)

The numerator in the above expression is also infinite but diverges as the square of the
volume and the denominator has the linear volume divergence mentioned previously.
The average position of a particle in the ensemble is then < y, >= +o0o. Thus the
particles are at equilibrium only when they have escaped the well. This interpretation
can be made more rigorous by considering finite upper boundaries on the integrals
and taking the limit of the boundary to +o0 as in Eqn.(13). As long as the boundary
remains finite, so does the quantity < y, >, but this quantity diverges in the limit of a
boundary at infinity. We thus conclude that a meaningful physical treatment of such
Hamiltonians in the canonical ensemble requires the explicit introduction of a cutoff
in the integral which of course one hopes can be interpreted physically.

The Morse oscillator illustrates a much more general feature of systems of particles
evolving under the influence of long-range, unscreened forces which asymptotically
tend to a finite value. Considerable care must be exerted in applying the methods
of statistical mechanics to these systems.® In particular, concepts such as thermody-
namical equilibrium, statistical ensemble, thermodynamic limit, and the meaning of
averages of various thermodynamic quantities must be thoroughly examined. In par-
ticular, several conceptual difficulties arise when the methods of statistical mechanics
are applied in the canonical ensemble. Other physical systems of interest also involve
long-range forces. Recently, an extensive study of the statistical mechanics of gravi-
tating systems was performed by Padmanabhan.!® Many of the conclusions he drew
for gravitating systems are similar to our results for the Morse potential.l?

One can now go back to the full Hamiltonian H, as defined in Eqn.(8) and show
that it exhibits the same problem. The partition function is given by:

R Ll g TR B AR, R |
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which again is not finite, since the integrand does not vanish at infinity. In particular,
one can easily verify this from the above equation by considering the line y; = y; =
. = Yn a8 Yo — +o0o. A dramatic consequence of this divergence, from the point
of view of the model is that the the average stretch of a base pair is infinite at all
nonzero temperatures at equilibrium. The implication is that the thermal equilibrium
state of the the chain, is one with all the bonds stretched to infinity. This is a direct
consequence of the boundedness of the Morse potential as stretches become large (even
infinite). This straightforward analysis does not, however, give us an idea of the time
it takes for the stretches to become infinite, a question which will also be analyzed
further in the next section.

For the sake of completion, we present in Fig.2 the results for the average HB stretch,
< yn >, as a function of temperature, in the thermodynamic limit for various values of
the cutoff, ys,, i.e. the Morse potential is valid for y,, < y, and there is an infinite barier
for stretches greater than y,. These results were calculated by solving numerically a
transfer integral equation.! We stress that the transfer integral method is valid for
this calculation only because we have added an explicit cutoff. The depth of the well,
Vo is set to 0.2¢V, k = 0.3¢V/A? and a = 2.77A~? (this puts the inflexion point of
the Morse at about 0.24) which is a typical parametrization of the Morse potential.'?

1.5 T T
L4r ~
13b tj,u:qA A
1.2F e
.1+ -
A~ LoF ‘éu-?) -~
o 0.9} 1
Y o8t -
/\CUJ- -
> 06F 2 ;
\V4 0.5+ ;.
0.4 -
0.3r w=1A .
0.2 b
0.1 -1
0.0 . .
0.0 0.5 1.0. 1.5
kpT Vg
Figure 2

III. NONEQUILIBRIUM THERMODYNAMICS

Based on the aforementioned results in the canonical ensemble and as a consequence
of treating the whole Morse potential with no cutoff, one can then ask the following
question: If we don’t restrict the Morse potential with a cutoff how much time is
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required for this divergence in the average HB stretch to occur at some temperature T,
given some generic initial condition of the chain? Of course the obvious answer is an
infinite amount of time since the particle must travel to +co. One can, nevertheless,
define some finite stretch as representing dissociation, in which case the required time
is finite. In the present model, this stretch can be identified with the stretch required
for imino proton exchange in DNA to occur. By the argument presented in the last
section, the above question is one of nonequilibrium thermodynamics.

In order to answer this question, one approach conmsists in using the Langevin
equations.!® The equations of motion are modified to include a heat bath with which
the system is in contact and which is at a constant temperature (this can be associ-
ated to the solution in which the molecule is typically found). We add two additional
terms to simulate stochastic collisions and dynamical friction of the molecule with
the environment.'* Eqn.(6) now becomes a system of stochastic differential equations
given by:

. : 0¢ .
M = k(Ynt1 + Yn-1 — 2yn) — By, T () (16)
Characteristic of such equations, the influence of the surrounding medium is split into
two parts: 1) a systematic term —m~y, which causes the friction and 2) a fluctuating
part n,(t) which represent the 'random’ collisions of the constituents of the medium

with the system in question. This fluctuating term will be assumed to posess certain
properties, namely:

< a(t) >=0 (17)
< nﬂ(tl)nm(t2) >= q5(t1 - t2)5nm7 (18)

where ¢ = 2mkgT~.'® The details of how this system is solved numerically along
with further results are presented elsewhere. ! The lattice consists of N = 125
particles with circular boundary conditions i.e. y1 = yi26. The dissipative constants
are assumed to be equal at all the lattice sites with a value of 4! = 207, where
T 1s the small amplitude period of the Morse oscillators. Thus, the system will be
underdamped and not dominated by friction, otherwise, the parameters will be taken
to be similar to those used in the previous section.

The procedure to be followed will be to start the lattice at its dynamical equilibrium
position i.e. with all particles at the bottom of their respective Morse wells, with no
kinetic energy, and then to evolve the system according to Eqns.(16). In all runs,
the average kinetic energy of a base pair on the lattice, < K, >, always thermalized
to 2kpT as expected (after about 50ps). For the above parametrization of the Morse
potential, a temperature of T, = 4642K would correspond to the average kinetic energy
being equal to the depth of the Morse well, nevertheless, at temperatures well below
T. it was possible to observe the system denature in a brief period of time as seen
in Figure 3(a) which plots the average HB stretch vs time for a T = 3000K. The
vertical scale is important since the inflexion point of the Morse is at about y, = 0.24
as mentioned above. Our calculations have shown that the lower the temperature the
longer the required time for the divergence discussed in the previous section to become
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evident. In fact, at T = 300K, room temperature, we performed several runs of 10ns
without ever observing any such divergence. Figure 3(b) shows a portion of such a
run. Once again notice the vertical scale. We can therefore see that even though the
system is not in equilibrium, that at low temperatures the system behaves as if it were
in a pseudo-equilibrium because its average kinetic energy is at the right value but
other quantities, such as the average HB stretch < y, >, are not.

Finally it should be mentioned that the Langevin approach was used to study the
effects of thermalization on the dynamics of this model that had been observed pre-
viously, particularly on the quasi-solitonic modes that exist.® The essential effect was
that for realistic Morse parameters, nonlinear wave propagation was strongly hindered
at temperatures above 10K .1!
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Figure 3

IV. CONCLUSION.

We have shown that the thermodynamics of this simple DNA model can be treated
meaningfully in the canonical ensemble, even though the partition function diverges -
one just has to interpret carefully the nature of the thermodynamic equilibrium state.
Furthermore the denaturation predicted for all temperatures has been shown to be
directly related to the boundedness of the Morse potential which represents the HB
interaction. This problem has been encountered recently in the study of Coulomb
gases® and the statistical mechanics of gravitating systems.!® We have presented two
ways of circumventing this problem: 1) avoid the divergences by putting a cutoff to the
Morse potential i.e. allow only for a certain maximum stretch 2) accept the divergence
as a final equilibrium state in the average stretch for all T and study how the system
in a nonequilibrium state evolves to this final state. In the latter case, we presented
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briefly results on the dynamical approach to equilibrium and showed that the time
required for the bases to separate can be very long for low temperatures.

DNA is known to undergo a structural phase transition during thermal denaturation?,
but this model showed no such clear cut behaviour at any particular temperature. We
can therefore conclude that more physics needs to be incorporated such as next-to-
nearest neighbour coupling and the helical twist. The HBs alone seem to account for
energy localization due to nonlinearity and that might be an important precursor to

thermal denaturation, but the transition itself requires that more phenomenology be
added to such a model.

1W.Saenger, Principles of Nucleic Acid Structure’(S pringer-Verlag,New York,1983).

?V.Muto,J.Halding,P.L.Christiansen =~ and  A.C.Scott, J.Biom.Struct.Dyn.
5,873 (1988);V.Muto, A.C.Scott and P.L. Christiansen, Phys.Let.A 136,33

(1989); S.Yomosa,Phys.Rev.A 27,2120 (1983);S.Takeno,Prog.Theor.Phys.71,395
(1984); C.Zhang,Phys.Rev.A 35, 886 (1987).

3J.W.Powell,G.S.Edwards,L.Genzel,F.Kremer,A. Wittlin, W.Kubasek and
W .Peticolas, Phys.Rev.A 35, 9 (1987).

“K.Awati, Ph.D. Thesis, Purdue University, West Lafayette, Indiana, USA (1989).

SM.Techera, L.L.Daemen and E.W .Prohofsky, Phys.Rev.A
40, 6636 (1989);M.Techera, L.L.Daemen and E.W .Prohofsky, Phys.Rev.A 41, 4543
(1990);M.Techera, L.L.Daemen and E.W.Prohofsky, Phys.Rev.A 42, 1008 (1990).

®M.Peyrard and A.R.Bishop, Phys.Rev.Let. 62, 2755 (1989).
"D.J.Scalapino,M.Sears,and R.A.Ferrel, Phys.Rev.B 11,3535(1975).

®K.Huang, 'Statistical Mechanics’, 2*¢ Edition (Wiley,Chichester,1987).

®M.K.H Kiessling, J.Stat.Phys.59, 1157, (1990).

1°T.Padmanabhan, Phys.Reports, 188, 285 (1990).

"'M.Techera, Ph.D. Thesis, Purdue University, West Lafayette, Indiana, USA (1991).
12R.M.Wartell and A.S.Benight, Phys.Rep.126, 67 (1985).

3] McLennan, Introduction to Non-Equilibrium Statistical Mechanics’ (Prentice
Hall,New Jersey,1989).

14S.Chandrasekhar, Rev.Mod.Phys. 15,1 (1943).
13T Schneider and E.Stoll, Phys.Rev.B 17, 1302 (1978).



A simple model of DNA dynamics
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In 1989 professor Yakushevich (of the Institute of Biological Physics of the Academy of Sciences of the URSS)
proposed a simple model for DNA (torsion) dynamics [1], from now on called Y model. Further details on
this model, as well as on many other ”theoretical physics” issues in biology and molecular biology are also
contained in the book [2].

This model is schematically illustrated in Figs.1 and 2; the (longitudinal) springs joining discs on the same
chain give only a torque, while the (transversal) ones joining discs on different chains work as shown in Fig.2;
see [1] for further details. It is quite clear that this model does not take into account the helical structure of
DNA.

A consequence of the double helix structure of DNA and a simple way to take this into account is that,
even if we consider only next neighbour interactions among the bases, this leads to interaction (also called
non-covalent interactions) among bases which are far apart along the bases (as the two which are pointed
out schematically in Fig. 4), since they are actually neighbouring in space.

A préposal to modify Yakushevich model in this direction [3], see Fig.3, was indeed presented shortly after the
the appearance of [1] (see also [4] for a related discussion on topological features), and leads to qualitatively
new phenomena. We refer to [1],[3] for a full discussion of the model, while here we just discuss the aspects
which are relevant to the topic of the conference.

In Y model, the degrees of freedom correspond to torsion of the bases, so that to each base is associated a
single scalar variable, ¢} = ¢%(t), where i = &1 identifies the chain of the double helix to which the base
belongs, while & identifies the site along the helix.

The Hamiltonian will be written as

H=T+V® 4 v® (1)

Contribution to the workshop Nonlinear Coherent Structures in Physics and Biology (Dijon, 4-6 June 1991)
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where T is the kinetic energy,

1 M l.
T=Y)" 5I(qsg,))2 (2)
in
and V), V() are the potential energy terms corresponding to longitudinal and transversal interactions
respectively: .
vO =7 sKia* (65 - ¢ 3)
in
1
v =3 5KT(AI,.)? 4
n

Here Kp, Kt are ”elastic constants”; I is the moment of inertia of the discs, and Al is, after ref. [1],

Al = [(2r + lo — T cos ¢3) — rcos ¢{)? + (rsin ¢l — rsin @) V2 ~lo = 1o ~ 1o (5)

where a is the distance among the bases, and r their radius.

Notice that we have assumed that the discs are all equal, that the coupling constants for interactions of the
same type are equal, and that the longitudinal elastic constants along the two chains are equal.

In the "helicoidal” version of Y model [3], from now on referred to as modified Y model, one adds a term
1 : _:
v =3 cKud (5, - 650) (6)
in
in the Hamiltonian, with Ky another elastic constant and d the distance in space among bases interacting
via the V{*} term, to take into account the helicoidal (i.e. non-covalent) interaction of the kind illustrated

in Fig.4; the original Y model corresponds then to Ky = 0.

In the continuum limit, we have z the coordinate along the chains, and we are left with two scalar fields

¢ = ¢'(2,1), i = 1.
We want to consider the case £ ~ 0, i.e. Aly ~ £; moreover we are interested in long wavelenght solutions,

which justifies passing to the continuum limit. When all these approximations are made, one is left with the
equations

16 = Kra*¢$) — Krr?[2sin ¢ — sin(¢®) + ¢CN] + Kud®[2(9 — ¢D) + ¢Bw?] 0
where w is the lenght of an half-wind of the helix in the z coordinate (i.e. along the helix itself).

From our point of view here, this model presents two remarkable features:
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Soliton solutions

There are special ansatzes which lead to well known equations and in turn to soliton solutions. Indeed, for
B = 0,6 = §, we get
Iy = Kpa'é,, — Krr’sing — Kyd®¢ (8)

Similarly, for ¢~ = —¢(M) = ¢, we get
I¢ = (Kpa* — Kpd®w?)¢,, — 2K7rr?sing — 4K yd*¢ 9
Le., we get sine-Gordon type equations; the Ky coupling is responsible for the appearance of a mass term.

As for the ¢{~1) = ¢(1) = ¢ case, we have no qualitative difference due to the introduction of the helicoidal

interaction: indeed, we get

I¢ = (Kpa* + Kpd®w?)é,, — 2K7r?sind + Krr?sin 2¢ (10

We remark that this kind of ansatzes fits well in the framework of ”conditional symmetries” [5,6] in the
group theoretical approach to differential equations [7,8,9]

Dispersion relations
By linearizing eq. (7), we get
16 = K1a*¢{) — Krr?[® — 601 + Ky d?[2(4¢9 - ) + 8u?] (11)

If now we look at travelling wave solutions,

¢ (2,1) =aeilez—wt)

$0(z,1) =peie=e) -
we get the relation
(0= Iw?)? = 4 (13)
where
o = ¢?(Kra*) + (Krr? + 2Kud?) (13"
p = Krr? +2Kpd*(1 - wiq?) (13”)
so that the spectrum of the model consists of an acoustical and an optical branch,
+
Wwr=IZH (14)
I
given explicitely by
1w} = (Kpa* + Kpd*w?)¢?
(15)

Iw? = (Kpa* — Kyd?w?)¢® + (2K R? + 4K i d?)
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In this case, the introduction of an helicoidal coupling is responsible for quite relevant qualitative changes
in the behavious of the model.

Indeed, for Ky = 0, the two branches are at constant distance (see Fig.5),

2K
wi-wl= —Ilrz (16)

while for K # 0 they can cross, as depicted in Fig.6. The corresponding wavelenght A, is given by
Aer =or Ky Y2 =9 _L> v (17)
w Krr? 4 2Kpd? = 24y

Conditions for such a crossing are shortly discussed in [3]; here we notice that a similar crossing of bands
in the spectrum of (simple) molecules is well known in laser spectroscopy, and usually corresponds to the
appearance of complex phenomena (also called ”quantum bifurcations”) [10,11,12]; it can be considered,

from our point of view, as the signal of appearance of a complicate, possibly chaotic, dynamics.
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Figure 1 - The Yakushevich model Figure 3 - The modified Y model
(interactions are not indicated)

Figure 2 - Detail of the “"transversal" interaction in the Y model (from {1])
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Figure 4 - Two bases interacting
via the "helicoidal” term

Figure 5 - Dispersion relation Figure 6 - Dispersion relation
for the Y model for the modified Y mode!



ANOMALOUS VIBRATIONAL MODES IN ACETANILIDE :

a F.D.S. incoherent inelastic neutron scattering study
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Extended Abstract

The origin of the anomalous infra-red and Raman modes in

acetanilide ( CgHgNHCOCHg , or ACN)(” , remains a subject of considerable
controversy. One family of theoretical models involves Davydov-like solitons (2)

nonlinear vibrational coupling (3), or "polaronic" localized modes (4)(5), An

alternative interpretation of the extra-bands in terms of a Fermi resonance was
proposed (6) and recently the existence of slightly non-degenerate hydrogen atom

configurations (7) in the H-bond was suggested as an explanation for the
anomalies.

In this paper we report some new results on the anomalous
vibrational modes in ACN that were obtained by inelastic incoherent neutron
scattering (INS) . Comparisons of the spectra of ACN and of five deuterated
derivatives,greatly facilitates assignments of the main features .
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The mutual influence of the different chemical groups (amide, methyl
group and phenyl ring) are emphasized by means of selective deuterations. The
possibility of vibrational coupling between them is discussed.

In addition, the temperature dependence of the y(NH) modes (out-
of-plane bend of the H-bond ) and of the methyl torsional modes are described.

These data are then compared to the predictions of the different
theoretical models that attempt to explain the anomalies.

The INS data were collected on theFilter Difference Spectrometer
(FDS), at Manuel Lujan Jr. Neutron Scattering Center of Los Alamos National
Laboratory, between IOK and 300K and deconvoluted ,to determine the frequency

distribution . The useful range of energy transfers , was 100 cm1-1600¢m1

(12meV-200meV) with a relative resolution (AE/E) of about 2% .

The five deuterated derivatives are :
CGHsNHCOCDs : ACN -d3 ’ CGHsNDCOCDs : ACN 'd4 ) CGDsNHCOCH3 .
ACN 'ds ’ CGDsNDCOCHs :ACN -de ) CGDSNDCOCDs : ACN-dg .

Comparison of the INS spectra of the various ACN isotopomers is a

powerful tool for determining the origin of the modes and their assignments .

In addition,direct subtraction (“differential spectroscopy”) can be used to highlight the
modes of a particular molecular group.

The low temperature spectrum of ACN is displayed in fig. 1 from 100 to

goocm 1. Fig. 2 shows the INS spectrum in the region of Y(NH) at 12K for the three

samples that have a protonated amide group. Tentative assignments of the bands
are given in table I. These are in agreement with available previous data from
Raman and IR spectroscopy .However , the INS do provide new informations : for
example ,in amide deuterated derivatives some small peaks at 750 cm-1 may be
attributed to out- of-plane C-H bending of the phenyl . In ACN these bands are
screened by the N-H bending , and never before identified .

Fig 3 shows the methyl torsional modes at 12 K in three samples.
Despite the limited resolution, the methyl mode appears to be split , in agreement

with the Raman scattering spectra (8)(9). In the single crystal polarized Raman study

(9) with a z(xy)z configuration the methyl torsion was found to gradually split as the

temperature is lowered below about 200K . The frequencies of the three
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components as well as the splittings all increase with decreasing temperature . INS

studies (10) previously identified the methyl torsion in ACN but the splitting was not
observed . In the present work at least three components may be identified in ACN ,
namely at 142, 146 and 152cm-1 . The effect of deuteration of the phenyl ring is a
significant change in the shape and of width of the methyl librational band. In ACN-
dg the splitting is even more evident, and the relative intensities of the component
have changed. These observations clearly demonstrate the influence on the
dynamics of the amide and methyl groups on each other.

The frequency shift of the methyl torsions as a function of
temperature obtained from our data ,fig.4 , is consistent with the measurements of
Johnston et al.(9) . The v (NH) mode at 754 em1 is also found to be affected by
deuteration of the other groups as shown in Fig.2. This mode undergoes a change in
shape and width upon deuteration of the methyl or phenyl group. Similar changes

in shape were observed in the corresponding IR absorption bands (1),

Another important feature of these spectra is the temperature

dependence of the vy (NH) mode, at 750-770cm1. The intensity of this mode was

observed to increase strongly with decreasing temperature ( Fig.1) . Moreover if
one considers the two spectra of ACN-d3 shown in fig & , in which there is no longer

any contribution from the methyl group, it is apparent that the intensity of the y(NH)
peak increases much more than other peaks with decreasing temperature. So, the
unusual intensity increase of the y(NH) with decreasing temperature is therefore an
intrinsic property of this mode .

These observations are in agreement with our IR spectra (11) which
indicate an total increase of intensity of the y(NH) with decreasing temperature of
about 20% between 300K and 15K. Similar observations have also been made by
Raman scattering in ACN(12),

Data from the different techniques are thus in agreement about this

important result , namely that y(NH) also has an anomalous temperature
dependence. So, ACN exhibits not only an anomalous amide mode at 1650cm™1

but also another one at 750cm™1.
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Among these new results, two of them seem to be especially
relevant to the problem of the anomalous modes in ACN :

- observation of the interdependence of the chemical groups, by
selective deuteration.

- Anomalous increase of the intensity of y(NH) with decreasing
temperature.

The band corresponding to the methy! torsional transitions is split in
three components and is sensitive to the deuteration of other parts of the
molecule.This splitting (also observed in the polarized Raman scattering(g)) may be
rationalized by a small departure from three-fold symetry for the rotational potential.
This could be induced by the low symetry of the steric environment of the methyl
group which in turn could be caused by differences in the positions of the hydrogen
bond protons . The methyl group would as a consequence occupy energetically
inequivalent positions and therefore have different librational frequencies . The
change in shape and width of the librational components when the amide or phenyl
ring are deuterated could resutt either from direct vibrational coupling of the methyl
torsion with motions of the other groups (or with low frequency phonons) or from a
modification of the rotational potentiel by changing the local environment of CHg.

The former model is consistent with the hypothesis of "polaronic”

local modes or solitons (5), while the latter would be related to the assumption of

multiple conformations of the molecular chain(7),

The width and shape changes of the bands corresponding to the N-
H bending mode upon deuteration of other groups of the molecule could be
accounted for by the same mechanisms , i.e. either direct vibrational coupling, or a
multiple-well potential for the amide proton .In this latter case , changes in the steric
environment affects the shape of this potential , and thus the frequencies and
intensities of the transitions to the excited levels.

At this point it is not possible to decide which of these possible
explanations is the relevant one.

The second result, which has now been observed by INS , IR, and

in Raman scattering is the anomalous thermal behaviour of y (NH) . It may be
expected to provide further important input into the determination of the origin of
these anomalies.For example,in the case of localized modes (polarons, solitons or
coupled oscillators) the temperature dependence of the anomalous intensity should

obey a characteristic law I(T)/|(0) = exp (--T? o2 (4) while the hypothesis
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of non degenerate substates for the amide proton would mean either a temperature
independent global intensity , or one governed by the Boltzman population of each
level.

Our former infrared data (11) indicate that the intensity of the y(NH)

mode of ACN obeys the exp(-T2/®2 } which would favor the family of models of

localized nonlinear excitations.However , former theories of the ACN problem only
took into account the anomaly at 1650 cm-1, and the recent observations of new
anomalies suggest that the self-trapping mechanism in ACN may be more compiex .
Further analysis is underway.
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TABLE /I

ASSIGNMENT OF THE E l
EREQUENCY(cm 1) ASSIGNMENT OBSERVATIONS
0-33 Acoustic modes
35-100 External modes IR and Raman
librations. spectroscopy
EDS
130-140 Methyl torsional (10), (9),
transitions sensitive to the deute-
ration of other group
171 shoulder disappearing
at 15K
186 External mode progressive energy shift
with deuteration.
275 Pheny! modes
345 Methyl modes
406 (C-C-C) out-of-plane deformation
502 Methyl modes
521 (C-C-C) out-of-plane deformation
600 Methyl modes
646 Methyl
683 Phenyl modes ,C-C-H deformation
754 ¥(NH ) (out-of -plane bending mode) Anomalous modes
and y(CH),Phenyl .
829 Y(CH) , Phenyl
890 Combination band decreases in ACN-d3
and in ACNd5
959 Y¥(CH) Phenyl Breathing modes (1)
1020 Methyl rock
1140 S(CH) Phenyl
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Notes: Vibrational modes that involve predominantly methyl group motions appear to
be heavily coupled with other modes (see Fig.3) .Their precise assignment requires

a normal coordinate analysis . y and & refer, respectively , to out-of-plane and in-

plane bends .
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1. Introduction

Nonlinear dynamical systems provide us with a relatively simple way to describe a
rich collection of physical phenomena. Taking advantage of the descriptive power of
nonlinear equations requires special justification, however, if the dynamical system of
interest is a molecule. For any physical system, a nonlinear dynamical model is an
approximation of the exact quantum-mechanical dynamics that comes from Schrodinger’s
linear wave equation. For molecular systems, we must ask what errors are involved in
approximating Schrédinger’s equation by a simpler but nonlinear model. We should also
understand how interesting nonlinear phenomena are manifested in quantum-mechanical
energy spectra, in order to test the predictions of nonlinear models against experimental
evidence.

One classically-nonlinear phenomenon that is relevant to molecular systems is the
tendency for the vibrational energy in a system of coupled oscillators to become localized.
When the forces in coupled-oscillator system are nonlinear, it can be energetically favor-
able for vibrational energy to be concentrated on a single oscillator instead of distributed
evenly over the system. Such localization of vibrational energy is observed experimen-
tally in, for example, the C-H stretch vibrations of benzene [1], and is known in the physi-
cal chemistry literature as a local mode. Satisfactory quantum theories for local modes in
small molecules have been developed [2,3].

The work presented here is motivated by a related theory for localized and possibly
mobile excitations in another type of molecular system: alpha helix protein. In 1973,
Davydov proposed that interactions (which are nonlinear when described in terms of clas-
sical physics) between Amide-I (C==0) bond oscillations and the vibrations of adjacent
hydrogen bonds could lead to stable coherent excitations in alpha helix sections of biolog-
ical protein [4]. Although much theoretical work has been done since Davydov’s original
paper, most calculations are based on nonlinear approximations of the true quantum
dynamics, for which precise estimates of the approximation errors are not known.
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I am studying a model for the same classically-nonlinear interactions involved in
Davydov’s protein theory, but which is composed of only four coupled oscillators instead
of the hundreds of bonds included in realistic protein models. For my system, it is possi-
ble to calculate the exact quantum dynamics by numerically solving the Schrodinger
equation. These exact solutions can be used to evaluate the accuracy of nonlinear approxi-
mation methods. Here I will present some exact wavefunctions for this model and make a
preliminary evaluation of the Discrete Self-Trapping Equation as a nonlinear approxima-

tion.

2. The Frohlich-Einstein Dimer

The Frohlich-Einstein Dimer (FED) is a system of four coupled oscillators, two with
frequency Q, representing the Amide-I vibrations in a protein model, and two Einstein
oscillators with frequency ®,, representing deformations of a surrounding molecular
structure such as the stretching of hydrogen bonds in an alpha helix. The FED is shown
schematically in Figure 1.

Figure 1:

site 1 site 2

This model is defined by a two-site version of the Frohlich Hamiltonian used in
Davydov’s protein theory. For the case where a single quantum of Amide-I energy is
present in the system, the FED energy operator can be written

#
Hegp = Y7 0yb;'b; + x\/ TS (b; +b;"B;B;1+J BB, +BJB),
i o]

where b; (b; " is a lowering (raising) operator for excitations of the i % Einstein oscillator
and B; (B,-f) is a lowering (raising) operator for excitations of the i Amide-I bond. The
Einstein oscillators have a characteristic mass M and a spring constant w such that
W, = Yw/M . The displacement operator Y; for the i” Einstein oscillator is

7
Y= \/ M, b; +b;".
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The strength of the intersite coupling between the two Amide-I bonds is given by the real
parameter J. The magnitude of intrasite interactions between the Amide-I bond and the
Einstein oscillator at each site is given by the real parameter .

The values for the FED parameters considered here are those appropriate for the
one-dimensional version of Davydov’s protein model [5], with the values for y and w
taken to be the midpoints of the appropriate ranges of values. These parameter values are
listed in Table I.

Table I: Parameters
J | 1.55x107% Joules
x | 48.5x 10712 Newtons
w 48.75 Newtons/meter
M| 57x10% kilograms

The calculations presented here for the parameters of Table I complement recent results
which concentrate on systems with lower Einstein oscillator frequency (smaller w,) [6]
and stronger intrasite coupling (larger %) [7].

3. FED Quantum Dynamics

Three different descriptions of the FED quantum dynamics are presented here. First,
for comparative purposes, the exact quantum theory for the classically-linear case y =0
is described. For 7 #0, we consider both the exact quantum theory and a nonlinear
approximation called the Discrete Self-Trapping Equation. We look for the FED version
of a Davydov soliton - a quantum-mechanical wavefunction for which there is initially a
greater probability of finding the quantum of Amide-I energy on one of the two sites.
Without loss of generality, we consider local modes on site 1.

3.1. The Zero-Interaction Limit (y = 0)

If the value of ¥ is set to zero, the two stationary quantum states of lowest energy for the
FED are

iEit
"

where |1 >10> and 10 > |1 > are harmonic-oscillator wavefunctions for the two Amide-I

M(:):%(u>|0>i|0>|1>)|0(Y1)>|0(Y2)>exp( )
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bonds, with the single quantum of vibrational energy localized on site 1 and site 2, respec-
tively. The factor 10(Y;) > is a harmonic-oscillator ground state wavefunction for the it
Einstein oscillator, with equilibrium position Y, =0. The corresponding energies are
E,==J.

3.2. The Discrete Self-Trapping Approximation

Most of the nonlinear approximations used on Davydov’s model are based on assump-
tions about the form of the quantum wavefunctions. One commonly-used trial wavefunc-
tion is

Y(t) = (c1[1>]0> +c2[0>[1>)[ 01 = By) >[ 0¥ 2 - By) > eXP(i—sﬁ) )

when written specifically for the FED. Here, |1>10> and 10> 1> are the Amide-I states
discussed in the previous section, and ci, ¢3, B; and B, are time-dependent parameters.
The Einstein oscillator harmonic-oscillator states have time-dependent equilibrium posi-
tions B,(¢). The complex amplitudes c; and c; have the property that Ic; (£)1? gives the
probability of finding an Amide-I excitation on site { at time ¢. In the jargon of Davydov
soliton fanatics, this is the "D2 Ansatz" for the FED.

With the additional assumption that the Einstein oscillators respond instantaneously
to changes in the Amide-I probabilities, the equations of motion for the parameters in the
trial state (1) are

2
l.h(:'1=—JC2—ZM—)“C1‘2C1 (23.)
. 2
lﬁC2=*JC1—Z‘;‘IC2I2C2 (2b)
and
b= - & ey ®

The system (2a,b) is known as the Discrete Self-Trapping Equation (DST) [8]. The time-
evolution of a local mode is obtained by integrating (2a,b) from an initial condition such
that |c1|>|c2]. Because the trial state (1) is not general enough to include all the possi-
ble FED wavefunctions, (2a,b) will generally not give the exact quantum dynamics [9].

The solutions of (2a,b) are known for arbitrary initial conditions in terms of Jacobi
elliptic functions [10,11]. For ¢(0)=1 and c,(0) =0, the site 1 excitation probability
evolves as

Py(t)=|ex(t)|* =401 +cn(u | k)]
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where cn(u | k) is the Jacobi elliptic function cn with argument u =2.94 ¢+ and modulus
k =.078. This elliptic function oscillates between 1 and —1 with a frequency
o =2.93 psec™!. Assumption (3) about the Einstein oscillators implies

<Yy(t)>=A[1+cn(u k)],
where, for the Table I parameters, A =—.497.

3.3. Exact Quantum States of the FED

Because the two sites in the FED are identical, we can choose all stationary quantum
states to be either symmetric or antisymmetric with respect to site exchanges. Using the
coordinates

1 _ L
5—@(Y1—Y2) and o= 2(Yl‘*'Yz),

the exact stationary states of the FED system can be written

+

yEO =[FE@)11>10>£f (= 8)10>11>]|m(c + ‘I%w)>exp(iE7; !

)

where |m(c +x/‘5w) > is a harmonic oscillator state for the coordinate ¢ with equili-
brium position 6 = — x/‘@w, and the * sign indicates whether the state y*(¢) is sym-
metric or anti-symmetric. A particular function f *(8) ( f ~(8) ) corresponds to each
symmetric ( anti-symmetric ) stationary state.

Shore [12] showed that a straightforward numerical calculation can be used to obtain
the functions f  (8) in terms of the coefficients in the expansion

FE®= X ¢t i@ >, @
j=0

where |j(8)> is the j™ harmonic oscillator number state in the coordinate 8. The
coefficients ¢ ji are found by diagonalizing the matrices H * and H ~ with elements
2

+ j+1 X
Hj; =+ (1YY T + o, ) ™

and

1)
2
Hifj = HSy = %[molw—J Vi+l.

Each of the eigenvectors of H ¥ (H ~) gives the coefficients cj+ (¢;7) in the expansion
(4) corresponding to a symmetric (anti-symmetric) stationary state of the FED. The asso-

ciated eigenvalue of H* (H ~) is the energy of that stationary state. The expansion
coefficients and energies of the two lowest-energy FED eigenstates are listed in Table IL
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Table II: Exact FED Stationary States

State Energy Co cq Cy C3 Ci>a
y* | -1.76 x 10722 Joules | 704 | -060 | .005 | .000 | .000
v~ | 125x10%* Joules | .698 | -.113 | .009 | -.001 | .000

It is significant that the coefficients ¢; are not the same for the two states in Table I
This means that unlike for % =0, one cannot generate the anti-symmetric state by "anti-
symunetrizing” the symmetric state. Another difference between the two states is that
while the energies of both are lower than the % = 0 values E ¥ = + 1.55x 10722 Joules, the
anti-symmetric state has been lowered .30x 10722 Joules while the symmetric state has
been lowered only .21x 10722 Joules. These observations indicate that an accurate char-
acterization of a superposition wavepacket requires knowledge of all the stationary
states involved in the superposition. Often in studies of larger systems only the lowest-
energy eigenstate is computed.

4. Local Mode Wavepackets

For % = 0 and for the % # 0 exact calculations, the two lowest-energy stationary states
are used to construct a nonstationary wavepacket that concentrates the Amide-I excitation
probability on site 1 at time ¢ =0. In each case, the site 1 excitation probability P (¢)
oscillates periodically in time for £>0. Four quantities are used to characterize the local
mode wavefunctions in order to make comparisons between the exact results, the linear
limit, and the DST approximation. These quantities are: a) the expectation of the energy
for the localized wavepacket vy (¢), that is, <y (t)|Hrgp |y, (£)>, b) the initial site-1
excitation probability P (0), c) the corresponding Einstein oscillator displacement
<Y1(0)>, and d) the frequency ® at which P (¢) oscillates. These four quantities are
listed in Table III for the three cases of interest.
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Table II: FED Local Modes

Case <Hpggp > P,0) | <¥1(0)> | o (1/psec)
Linear (x =0) 0 1 0 2.94
DST (x=48.5pN) | -24x1072 Joules | 1 -.99 pm 2.93
Exact (} =48.5pN) | -.25x 10722 Joules 998 | -1.05pm 2.85

4.1. Effects of Nonzero

The local modes of the FED show three effects of the Amide-I/Einstein-oscillator
interaction (the classical nonlinearity).
1. The average energy of a local mode wavepacket decreases for y # 0.
2. The stationary state wavefunctions deform so that the expectation of the coordinate Y
is correlated with the probability of amide-I excitation P, (¢).
3. The frequency at which the quantum probability oscillates between two sites decreases.
In terms of quantum-mechanical data, this corresponds to a decrease in the splitting
between the two lowest energy levels of the FED system.
These qualitative effects are found both in the exact quantum theory and in the DST
approximation.

The wavepacket created from the exact stationary states in Table II was the simple
linear combination

VL0 = O +y ()
This wavepacket gives P ;(0) = .998, the largest value possible for a superposition of the
first two exact states. Theoretically, the two lowest-energy quantum states may be com-
bined in any normalized superposition. A wavepacket for which the contribution from
y* is larger than that from Wy~ will give a smaller maximum value for P (z) but the
wavepacket will have a lower average energy. For any superposition of y* and v,
P (t) oscillates at the frequency o= 2.85 psecL.

4.2. Errors in the DST Approximation

The DST approximation underestimates the effects of nonzero x: the DST gives an aver-
age energy which is slightly higher than exact value, an Einstein oscillator displacement
which is smaller than the exact value, and a probability transfer frequency which is
greater than the exact value. In addition, the DST equation gives no indication that in the
exact quantum theory a superposition of the two lowest-energy stationary states can give
at most P ;(¢) = .998.
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It is not possible to make quantitative conjectures about the quantum dynamics of
extended systems based on the results presented here. However, this information about
the qualitative features of the FED wavefunctions and their relation to the DST approxi-
mation may be useful knowledge to those using such approximations to study more com-
plicated systems.
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Abstract: The influence of disorder on the structure of kinks in conjugated polymers is
studied. Towards this end the quasi-classical Green’s function equations are solved on
the imaginary frequency axis and analytically continued to real frequencies via a Padé
method. A substantial broadening of the kink on increasing disorder strength is found.

1. Introduction

One of the unsolved problems in the area of conjugated polymers is the detailed nature
of the metal-insulator transition as found experimentally upon doping. Several attempts
have been made which take into account the formation of nonlinear excitations such as
kinks and polarons as more and more charges are introduced into the system. In most
cases, however, a detailed microscopic description of the interaction of these
excitations with the dopants has not been used. Only a qualitative change such as gap
decreasing due to disorder or band broadening due to doping has been considered. (For a
short review see Ref.1) Here we want to study in detail the change of electronic and
lattice structure of kinks as the impurity concentration is increased. The interaction
of a single kink with a single impurity within the t-matrix formalism has been studied
before [2]. The generalization to the case of many impurities appears to be difficult.
In our approach here we include the influence of disorder via a uniform background
which is obtained through averaging over an impurity distribution. We expect to obtain
thus some of the important aspects of the many impurity situatuion. On a general scale
our approach might be viewed as an example how nonlinear structures are modified under
the influence of external randomness starting from a microscopic description of the

physical situation.
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This paper is organized as follows: in the next Chapter we decsribe the microscopic
model and give a short derivation of the coupled system of equations which we have to
solve. Symmetries and asymptotics which are imposed for physical reasons will be
discussed. In a following section we describe the numerical procedure which we have
used in order to obtain a selfconsistent solution. Some remarks on the problem of a
numerical analytic continuation are given. Finally we discuss the results for a kink in
detail and close with some prospects on the polaron.

II. Model

As in most cases the relevant physics of an electronic system such as a conjugated
polymer is governed by the states around the Fermi energy. Since this is clearly an
approximation to the real situation one can nevertheless describe the universal
features of a whole class of materials. In the case of conjugated polymers this
approach leads to the widely used Su-Schrieffer-Heeger model [3] where only an
effective coupling of one-dimensional electrons to the lattice is taken into account.
The continuum description [4] within this model is a second step with respect to the
universal features of these materials, the final Hamiltonian reads

H =¥ Jdx \u:(x) {-i c, o, + A(x) o, } Y (x) + 12 rdx A%(x) 1)

with the 2-spinor Y(x) describing left- and right-moving electrons, A(x) is the lattice
order parameter (dimerization), and all quantities have been scaled such that the
electron-phonon coupling constant A appears in front of the lattice elastic energy. In
this formalism the influence of bond impurities are represented by an additional term

_ +
Himp = % Jdx v (x) % U o, 8(x-xa) v (x) 2)

with U the strength and x_ the random position of the impurities. The order parameter
has to be determined selfconsistently as the minimum of the total energy.
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Our approach to solve this problem uses the conventional Green’s function technique in
the quasiclassical approximation. The derivation of the corresponding equations of
motion has been given elsewhere [5], here we indicate the essential steps only.
Starting from the Dyson equation for the matrix Green’s function G the corresponding
equation for the impurity averaged function g = <G> with a selfenergy X can be derived.
With the usual left-right trick this imhomogeneous equation is transformed into a
homogeneous one with an additional normalization condition.

Using the Born approximation (weak scattering limit) for the selfenergy the final
system of equations reads

8 b (x,0) = 2i AKX) b,(x,0) - 2i/ b(x,) b (xw) (32)
8 b,(x,0) = 20 b (x,0) - 2i AKX) b(x®) + 2/t b (x,) b (x0) (3b)
3 b (x,w) = -20 b (x,0) (3¢)
1 = bli(x,0) + bi(x,0) + b(x,0) (3d)
Ax) = -in A I § dof2m exp(ioe) b(x.0) (3e)
N(x,0) = Im 2i b (x,0) (36)

with bn the components of the Green’s function g, (3d) the normalization condition,
(3e) the selfconsistency equation, and (3f) the electronic density of states.
1/7 = ¢ U* describes the influence of the impurities with ¢ concentration. In the
absence of impurites (T=o0) one can give analytical expressions [6] for the homogeneous
ground state (A=const.) as well as kink and polaron excitations with a spatially
structured A(x).

One observes that in these solutions square root singularities around the gap determine
the interesting functions. This suggests to go over to imaginary frequencies for a
numerical solution. Decomposing the Green’s function into imaginary and real part
bn=Rn+iIn and using fundamental symmetries of the spectral function we arrive at
15=11=R4:0 along the imaginary frequency axis so that we have only three coupled
differential equations instead of six.
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In additon we have A(x)= s A(-x), Rl(x)=Rl(-x), I4(x)= -8 I4(—x), Rs(x)= s R 5(-x) with
s=+1 for the ground state (and the polaron) and s=-1 for the kink. Also the relations
Rl(iv)=—R1(-iv), I4(iv)=-I4(—iv), and Rs(iv)st(—iV) along the imaginary frequency axis
can be derived. As boundary conditions we have Rs(x=0)==0 from symmetry and
Iki“k(xmﬂ) = Ih°m(xmax) since far from the center of the kink the structure has

4 4
relaxed to the homogeneous case.

II. Numerical Procedure

For a numerical treatment we confine ourselves to a finite system in both space x and
frequency v which leads to a fixed frequency cut-off Voar The scaling property of the
equations (3) v’=v/A0, x’=xA0 together with A(x)=A0f(x) combined with the asymptotic
behavior f(x->») = 1 leads in the selfconsistency equation (3e) to an -effective
coupling constant A(1), n=174,,

V(':ut hom, . -1
M =02 [ dv 5"Gvim) ) “@
0

if one wants to preserve the property that the scaled quantitiy A is indeed the correct
asymptotic value for x going to infinity. In consequence the physical space which we
can cover by this procedure is enhanced by a factor 1/A0(1‘|)>1.

The coupled equations (3) are now solved by an iteration method: for a given function
f(x) the differential equations (3a-c) are solved by a relaxation procedure. From the
new Green’s function a new order parameter f(x) is calculated and put back into (3a-c)
until convergence is reached. For the determination of the density of states the
Green’s function b . has to be continued to real frequencies. It turned out that for the
ground state as well as for the kink this can be achieved with sufficient accuracy
through a Padé approximation (using the Thacher-Tuckey algorithm [7]). Unfortunately in
order to solve the selfconsistency equation for the polaron this continuation has to
be performed at every step of the iteration.

We have tested our method with the case of a homogeneous order parameter where the
exact solution can be given analytically [5]. These results will be given elsewhere
[8], the overall agreement is very good including the numerical analytic continuation.
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IV. Dirty Kink

In Fig.1 we show the results for the spatial structure of the kink order parameter f(x)
for different values of disorder strength M. A substantial broadening can be observed
as the impurity concentration is increased.
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Fig.1: Spatial structure of the kink order parameter f(x):A(x)/A0 for different
impurity concentrations: N=0.0 (upper curve), N=0.8 (lower curve), in steps of 0.2.

This broadening can be quantified by analyzing the behavior at the origin. Assuming a
linear dependence f(x)~x/{ (which is motivated by the exact result for the clean case)
we can calculate the width { as function of impurity concentration. Keeping in mind
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Fig.2: Kink width as function of impurity concentration (see text).
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that we have used scaled variables the physical width § is given by £ = { / A (). Both
quantities are displayed in Fig.2. One can see that as M approaches the critical value
n=1 the width of the kink appears to diverge. Unfortunately due to the finite lenght
used in the solution of (3) a detailed investigation of the critical region is beyond
the present approach.

This can also be seen clearly in Fig.3 where we show the asymptotic value Rl(xmﬂx) as
function of impurity concentration. As stated in the previous section this should
approach the value of zero corresponding to the homogeneous solution. Only up to
1 < 0.4 we are able to reproduce this boundary value with sufficient accureteness.
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Fig.4: Electronic density of states for a kink as function of energy ® and spatial
coordinate x (x=0 being the center of the kink) for impurity parameter 1=0.1.
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In Fig.4 we finally display the electronic density of states obtained from the Green’s
function via a numerical analytical continuation. The pole struture due to the kink at
zero frequency is well reproduced, in the Figure the calculated values have been scaled
down by a factor 10°. This pole modifies the density of extended states beyond the gap
for lo |>A0 as well. Far away from the kink (|x | »1) the system relaxes into the ground
state.

V. Summary

In conclusion we have shown how a nonlinear excitation such as the kink in conjugated
polymers is influenced by the presence of randomly distributed impurities starting from
a microscopic description of these impurities. We find that the spatial structure is
substantially broadened, the electronic properties change drastically as the gap
decreases upon doping.

It turns out to be more difficult to study the polaron with the method presented here
since at each step of the iteration an analytic continuation is necessary. The reason
for this is the more complicated pole structure of the polaron state. However, as far
as the doping process in the whole class of conjugated polymers is concerned, the
polaron is the more important object to study. We shall address this question in a
future publication [8].

We close with a technical remark: we have studied various methods for the analytic
continuation problem [9]. For the purpose of this paper the method described in Chap. 3
gave satisfactory results; the polaron problem, however, poses more serious constraints
on the quality of the continuation procedure.

Acknowledgement: We thank J.Heym, W Pesch and D.Rainer for discussions. This work was
performed within Sonderforschungsbereich SFB213 (TOPOMAK), Bayreuth.
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A DISCRETE SELFTRAPPING EQUATION MODEL FOR SCHEIBE AGGREGATES

O. Bang and P.L. Christiansen
Laboratory of Applied Mathematical Physics
The Technical University of Denmark
Building 303, DK-~2800 Lyngby, Denmark

Abstract. A discrete nonlinear model for the dynamics of Scheibe aggreg-
ates is proposed. The collapse of the collective excitations found by
Mobius and Kuhn is described in the isotropic case as a shrinking ring-
wave which is eventually absorbed by an acceptor molecule.

1. Introduction

Recently, Huth et al. proposed a nonlinear continuum model for the
energy transfer in Scheibe aggregates [1]. These are highly ordered mol-
ecular monolayers, which can be produced by Langmuir-Blodgett technique
[2,3]. Oxycyanine dyes, e.g., are used as donor molecules and thiacyan-
ine dyes as acceptor molecules. Even with a donor to acceptor ratio as
low as 10*, the aggregates exhibit highly efficient transfer of energy
from impinging photons via excited host molecules to acceptor guests
[4,5]. In Ref. [4] it is found that the coherent exciton picture provides
an adequate description of the experimental results, which indicated a
lifetime of the coherent exciton, tlife’ before it is absorbed by an ac-
ceptor molecule, of about 10 s [5]. The exciton involves approximately
10* molecules. In Ref. [6] the isotropic continuum model proposed in [1]
was used for a qualitative prediction of the lifetime. Here the dynamics
of the ringwave solution to the cubic Schrddinger equation in two spa-
tial dimensions [7] is essential.

In the present paper we introduce a discrete model of the Scheibe
aggregate based on the discrete selftrapping equation (DST) [8]. The dy-
namics of the ringwave in this discrete case is investigated and results
concerning absorption at the acceptor molecule are included in the iso-
tropic case. Further ongoing work concerning the discrete model will be
reported elsewhere [9,10].

2. Discretization of the continuum model

The continuum model proposed in [1l] leads to the cubic Schrddinger
equation for the wave function of the molecular excitation u(r,t)

3 -1, 2y =
iu, +u +rtu + 2fuffu=0 (1)

in dimensionless variables [6] in the case of two spatial dimensions and
circular symmetry. Here r is the radial coordinate and t is the time.
The first conserved quantity becomes
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I, = j Juf?rdr = at/27 , (2)
0

where o is the anharmonicity parameter and % is the molecular spacing in
the Scheibe aggregate. For realistic values of the physical parameters

I1 = 5,55 [6]. Under certain conditions, an initial circular ringwave was
found in [7] to shrink and collapse at the centre of the ring in a finite
time, giving rise to blow-up of the excitation amplitude at the centre.
With N0 (= 10*) molecules inside the ringwave the initial radius becomes
ro = 50.9 [6] (yielding an initial amplitude of the ringwave Uy = I1/2r0 =
0.0545). Furthermore, if the initial radial velocity r6 = 0, the theory

predicts a collapse time t = 809 [6]. In the following, we use

collapse
the scaling invariance of Eg. (1) t » Bt, r » B¥r, u - B‘“Zu,AI1 -1
with the constant B = 1024 yielding ry = 1.59, u, = 1.74, and t

0.790.

collapse

I 1 ] 2 [ Nyl I Ny,
| Matl | Npgt2 |- IR
rN-th;llN-th;Zl- .- r N-l’. l N w

Figure 1. Position and numbering of the molecules in the brickstone work
model of the Scheibe aggregate [5]. N is the total number of molecules

and N o is the number of molecules in one horizontal row of the aggreg-
ate. Bogh N and Npoy are chosen to be odd.

Figure 1 shows Kuhn and Mdbius' brickstone work model of the Scheibe
aggregate [5]. Each donor and acceptor molecule is a dipole which is re-
presented as a brickstone. Clearly, the molecular monolayer is anisotropic.
However, assuming that the length is twice the width of each brickstone
and taking only the dipole-dipole interactions between a molecule and its
four nearest neighbours into account, the resulting model agrees with a
direct discretization of Eg. (1). Thus replacing u + rlu, =u + U

rr r XX vy
by the central difference

4

- 2
(Z Anearest neighbours 4 A)/ A
1

we get the discrete selftrapping eqguation (DST)
iA + idiag(a)A + ydiag(|A[2)A + €MA = 0 . (3)

Here u(nxx,n A,E) 2 An(t), An denoting the excitation of molecule num-

Y
ber n, placed at (X,y) = (nxx,nyx), n, and ny being integers and ) the
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distance between neighbouring molecules. A is the column vector
(Al,Az,---,AN), N = NhorX(ZNhor—l) being the total number of molecules
and Nhor

In the DST-model each dipole molecule is described as a nonlinear os-
cillator, the nonlinearity entering into Eg. (3) via the diagonal NxN
matrix (zero elements not shown)

1217

the number of molecules in each row in Fig.l.

_ ) fa)?
v diag({a]?) = v (3a)
gl
Y being the nonlinearity parameter (y = 2 when Eg. (3) is a discretiza-

tion of Eq. (1)). The nonlinear oscillators are coupled via the symmet-
rical Nx N matrix (zero elements not shown)

-

(3b)

o
=
1l
]
Ll
-
~

o

¢ being the dispersion parameter (& = 1/A?. Diagonal terms, -4, have been
removed from Eg. (3b) by a gauge transformation). Losses, not included
in Eg. (1), enter via the term idiag(a)A, where

%1

o
2
diag(a) = . . (3c)

Here,
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o for i = (N+1)/2
ay = { acc (3d)
%4on for i = (N+1)/2 ,
where a is the loss coefficient for the oscillator placed at site n =

acc
(N+1)/2, modelling the absorption at the acceptor molecule (at the centre

of the ringwave). Radiative losses, represented by damping at the donor

= 0).
don
Initial data for the numerical solution of the DST equation, presented

molecules, are neglected (a

in the following section, are obtained by sampling the initial ringwave
with radius ry = AVNO/v.

3. Numerical results

Figure 2 shows the time evolution of the ring wave in the DST model
without losses corresponding to the continuum model of the actual Scheibe

Figure 2. Evolution of ringwave in DST model. & = 314.4, vy =2, rg = 1.59,
I, = 5.55, Ny = 10“/4, adgee=0. £t ={(a) 0, (b) 0.6, (c) 0.75.
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aggregate [6] with the particular scaling described in Section 2. For
computational reasons, N, was reduced from 10" till 10%/4. It was checked
that the time evolution does not depend critically on the choice of NO'
(Thus a further reduction of No till 10%/12 did not produce any signific-
ant change in the computational results.)

Initially (Fig. 2a-b), the ringwave is seen to contract as predicted
by the isotropic continuum model [7]. However, no matter how fine the
grid may be, the amplitude of the shrinking ringwave in the centre area
will eventually reach such a magnitude that the resolution of the grid
becomes insufficient. As a consequence, the discrete model cannot repro-
duce the blow-up any further and dispersive radiation among the coupled
oscillators results (Fig. 2c). In the scaled continuum model of the Scheibe
aggregate the collapse time is 0.790 while the time needed for maximal
excitation at the centre was found to be 0.59 in the corresponding DST-
model. One reason for this difference is the fact that the requirement
for the validity of the continuum perturbation theory [7], Il >> 4, is
barely fulfilled (Il = 5.55). In Figure 3, we compare the radius of the

N
o

max

1.5

1.0

0.5

Poovaaa sl enrnvonefananeseas)iitasnnes

o
o

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time

Figure 3. Ringwave radius, Ryaxr @s a function of time. Dotted curves:
continuum model. Full curves: EST model (¢ = 312.5, vy = 2, ug = 2.5,

@uec = 0). (a) I = 5.0, (b) I; = 7.5, (¢) I; = 10.0.

ringwave, as a function of time, in the continuum model and the DST-model
for different values of Il. The larger Il, the better agreement between
the two models and the larger the radius at which the ringwave begins to
disperse.

In the continuum model [6] the absorption by the acceptor molecule was
neglected. In the present DST-model where the discreteness prevents com-
pletion of the collapse we now add loss at the acceptor site. Figure 4
shows the amplitude at this site as a function of time in the lossfree
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Figure 4. Centre amplitude, |A CC|, as a function of time. DST-model
(c = 314.4, v = 2, uy = 1.72, £7°= 5.5). (a) agee = 0, (b) agee = 102.

case (a) and for (b) a c = 102, The introduction of attenuation is seen

to compete with the di:;ersion due to the discreteness of the model, and
wins the competition, eventually. In this manner, a substantial part of
the ringwave excitation is transmitted to the acceptor molecule. A delay
in the shrinking of the ringwave due to the acceptor loss is also ob-

served.

Conclusion

In the continuum model of the Scheibe aggregate the coherent excita-
tions collapse at the centre of the ringwave in finite time. The molecu-
lar structure of the aggregate leads to a discrete model in which the
collapse cannot be completed because of dispersion. Addition of absorp-
tion at the acceptor molecule collects the excitation at this site. A
detailed study of the competition between dispersion and dissipation will
be presented elsewhere.
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INTRODUCTION

To describe the heart tissue, i.e. a set of a large number of coupled cells, many models
use a network of electrically coupled elements corresponding to cells with resistances and
capacitances. Sets of coupled differential equations governing the time evolution of trans-
membrane potentials and of internal parameters or excitabilities are used. Bidimensional
models have been developped and we refer to [3], [8]. These computer simulations calculate
time by time and for each element of the network the trans-membrane potential and they allow
to describe the propagation of the depolarizing wave through the tissue cell by cell.
Nevertheless, these models involve a lot of variables and their simulations consume a lot of
computer times. Few tridimensional models of this type have been developped such as [9].

In order to limit the consumption of computer times, several authors use simpler models.
The heart tissue is represented as a network of elements that can depolarize the nearest
excitable elements. For instance, in such a time discrete bidimensional model, any newly
depolarized cell can depolarize at the following time interval any excitable cell in a small
neighborhood, either the four nearest cells or the eigth nearest cells. In these models, the
trans-membrane potential is not calculated continuously with time from chosen differential
equations. A simple law of propagation is used and computer simulations are realized. We
refer to [6-7]. In our bidimensional model of the ventricle, we use a particular law of wave
propagation, the Huygens’ construction method. This model has allowed us to simulate
different reentry mechanisms inducing self-sustained waves and we refer to [1-2].

1. MECHANISMS INDUCING SELF-SUSTAINED CONDUCTION TROUBLES

1.1 Presentation of the model

A square surface element of the ventricle is represented by a network of 2500 points,
Each point (i,j) of the surface element, where i and j € [ 1, 50], corresponds to a group of few
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cardiac cells which can be found in a discrete set of cellular states. To each point (i,j) is
associated a state matrix taking integer values S(i,j) and varying with the cellular states. Cells
can be excitable (S(i,j)=0) or depolarized (S(i,j)*0). It is a time discrete model and we
calculate at equal time intervals Dt the states of the different groups of cells. The refractory
period can differ from one point (i,j) to another (k,l) but in general it is fixed at the beginning of
each simulation, say R(i,j) at point (i,j). When cells are depolarized, the state matrix varies
suddenly from O to R(l,j). Then, at each time Interval Dt, the state matrix decreases to give
R(i,j)-1 after time Dt, R(i,j)-2 after 2Dt, . . ., 1 after {R(i,j)-1}Dt, and finally becomes again equal
to 0 after R(i,j)Dt. In this situation, the corresponding cells are again excitable and can be
depolarized another time. There are R(j,j)+1 possible state transitons 0 - R+ R-1 - R-2 - .

.= 1= 0, and thus the refractory period is equal to the time necessary for them, i.e.
{R(i,j)+1}Dt.

The propagation law is the Huygens’ construction method. In this way, it is assumed
that during the time interval Dt, each newly depolarized group of cardiac cells at a point (i,j) is
able to depolarize any excitable cardiac cell which can be found in a small neighborhood
defined by a circle centered on this point (i,j) with a radius R(i,j) = ¢(i,j).Dt. This radius R(j,j)
corresponds to the distance covered by the wave from this point during the time interval Dt.
Computer simulations are presented as sequences of electrical mappings giving the state of
each point (i,j) of the surface element at consecutive time intervals, t=0, Dt, 2Dt, .. ... , NDt,
where N+1 is the number of electrical mappings. We use different grey intensities in order to
visualize states of cardiac cells.

1.2. Unidirectional blocks

Unidirectional blocks occur when for a given axis of propagation, the wave can only
propagate In one direction. In our simulations, a unidirectional block is represented by a
segment of length | located at the middie of the surface element. If the wave moves from the
left side, it cannot pass through it. Reversely, a wave coming from the right side can pass
through it. The conduction is allowed in one direction and is forbidden in the opposite
direction. The computer simulation presented on figure 1 shows that the wave initialized on
the left side turns around the unidirectional block corresponding to a length of 32 points and
then reenters. This is the triggering process of a self-sustained circus motion. These simulated
patterns are in good agreement with experimental ones obtained by epicardial and
endocardial electrical mappings realized on dog hearts during ventricular tachycardia and we
refer to [4]). Also, it can be noticed that these patterns are very similar to those obtained by
computer simulations from [6] or still [9]. Such reentries and periodic rotating waves can also
be obtained by considering an area of ectopic cells contiguous to an area of cells in refractory
periods.
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Figure 1: Unidirectional block inducing a self-sustained periodic reentry.

1.3. Role of anisotropic conduction on the initialization of reentries

Till now, we considered isotropic conduction conditions. As a matter of fact, it has been
shown experimentaly that the conduction velocity was connected to the relative orientation of
the axis of propagation with respect to the heart fibres direction. The conduction velocity is
about three times larger for an axis of propagation parallef to the heart fibres direction than for
a perpendicular one.

in order to take into account the anisotropy of conduction, now we shall consider an
homogeneous surface element of the ventricle composed of cardiac fibres with an horizontal
direction. Consequently, we have modified the Huygens construction principle so that the
wave front position is now given by the envelope of ellipses instead of circles with long axis
three times larger than the short axis corresponding to the heart fibres direction, i.e. the
horizontal axis. Typical patterns are presented on figure 2. In previous works, we have shown
that the anisitropy can play an important role in the triggering of reentries. Particularly, if the
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unidirectional block is perpendicular to the heart fiber axis, the threshold size of the
unidirectional block is decreased in a ratio three. For further details, we refer to [1-2].

Figure 2: Unidirectional block in anisotropic conduction conditions showing that a small block
(perpendicular to heart fibres) can induce a reentry.

2. ELECTRICAL DEFIBRILLATING SHOCKS

This section presents simulations of electrical defibrillating shocks. First of all, a self-
sustained conduction trouble is initialized. In a second step, we simulate an electric shock
delivered to the surface element of the ventricle. In order to simulate various intensities of the
electric shock, the average percentage P of excitable cardiac cells which are depolarized by it
is chosen differently from one sequence to another.

2.1. Low percentage of depolarized cells

At time 6, an electric shock is delivered to the ventricle surface element with a
percentage P = 2%. The following time interval 7 displays the effect of the shock. Figure 3 (a)
shows that the percentage of depolarized cells is too low in order to stop the reentry. The
pattern of the electrical mapping is similar after the shock than before it. Such a low
percentage of depolarized cells is not efficient. Now, let us increase the energy of the electric
shock and let us consider a high energy shock with a large value of P.
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Figure 3 : (a) Defibrillating electric shock depolarizing 2% of excitable celis. (b) High
percentage P = 90% defibrillating electric shock. (¢) 100% defibrillating shock.
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2.2. High percentage of depolarized cells

In figure 3 (b), we present a simulation of an electric shock with a high percentage of
excitable depolarized cardiac cells, P = 90%. One can see that at time interval 7, almost all the
excitable cardiac cells have been depolarized. The next time intervals show that the very
small number of cells that has not been depolarized is able to initialize again multiple
reentries. These secondary reentries are sources of several self-sustained rotating waves.
Under these conditions, one sees that this electric shock is aiso inefficient. But contrary to the
previous example, the pattern of the electrical mapping is changed. The initial pattern is
destroyed and the secondary reentries generate a new electrical periodic pattern. These
muitiple reentries wiil lead to an uncoordinated contraction of the heart which can be related
to fibrillation.

2.3. 100% Depolarized cells

The two previous figures show that at the time of the shock delivery, the non
depolarized excitable cardiac cells can initialize again self-sustained conduction troubles.
Consequently, to be sure to stop the reentry, it is necessary to deliver an electric shock which
depolarizes 100% of the excitable celis such as on Figure 3 (c).

3. EFFECTS OF ANTIARBHYTHMIC DRUGS

Drugs act at the cellular level by modifying the properties of the cardiac cells. They can
make vary the refractory period, the conduction velocity, or still the excitability threshold. In the
next computer simulations, we consider the effect of the variation of a single parameter on the
reentry mechanism. As a consequence, we do not simulate the action of a particular drug
which can have complex actions on several parameters. But, it is rather a computer
experiment allowing to study the action of the variation of a single parameter while ajl the
other remain constant. We study the dependence of the reentry mechanism with respect to the
refractory period, (either by decreasing or increasing it).

3.1. Effect of a decrease in refractory period on the reentry mechanism

In this simulation, firstly a reentry mechanism is triggered. Then, it is assumed that the
refractory period is decreasing during the sequence of about a ratio 1/3. Firstly, one sees that
the spatial size of the reentrant area decreases. Secondly, the time frequency of the reentry
increases. Under these conditions, a decrease in the refractory period allows the reentry to
develop in smaller space areas at a higher rhytm. In this way, a decrease in the refractory
period has an arrhythmogenic efect and favors the reentry mechanism.
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Figure 4: Effect of a decrease in the refractory period on a periodic reentry.

3.2. Effect of an increase in the refractory period on the reentry mechanism

Figure 5: Effect of an increase in the refractory period on a periodic reentry.
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In the next simulation of figure 5, we assume the inverse process of figure 4, i.e. an
increase in the refractory period. In this sequence, a reentry is initialized by a unidirectional
block. This increase in the refractory period can resuit of the action of an antiarrhythmic drug of
class lll. Figure 5 shows that the wave front of the periodic wave is now going to meet cells
with longer refractory periods. While before, the tissue was becoming immediately reexcitable
when the wave front of the next reentering wave was arriving, on the contrary, now the wave
front meets cardiac cells in refractory period and thus cannot propagate anymore. This is a
desynchronization between the travelling wave periodic motion and the periodicity of the
depolarization-repolarization process.

CONCLUSION

Our computer simulations allow us to study several mechanisms inducing self-
sustained conduction troubles leading to an uncoordinated contraction of cardiac fibres
related to ventricular tachycardia and fibrillation. These simulations show that an important
parameter is the wave length which is defined by the product of the conduction velocity by the
refractory period duration. Grossly, any process which makes increase this wave lenght has
an antiarrhythmic effect. On the contrary, any process which makes decrease the wave lenght
is going to favor reentries and arrhythmias.
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NUMERICAL STUDIES OF SOLITONS ON
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Abstract

‘We use path-following methods and spectral collocation methods to study fam-
ilies of solitary wave solutions of lattice equations. These techniques are applied
to a number of 1-D and 2-D lattices, including an electrical lattice introduced by
Remoissenet and co-workers, and a 2-D lattice suggested by Zakharov, which in a
particular continuum limit reduces to the Kadomtsev-Petviashvili equation.

1 Introduction

We consider here the study of solitary waves on lattices, as a special case of the more
general problem of energy transport in lattice models. For example, consider the atomic
lattice with Lagrangian

L= Y {362 = V(e - an)} 1)

where «, is the displacement of the nth particle from its equilibrium position, and
V{ant1 — o) is some interaction potential. If the relative displacement of the nth bond
is defined to be u, = a1 — o, then the equation of motion becomes

d2 ! 1 !

ZpEtn = V'(tng1) = 2V (un) + V'(upn-1). 2)
In general no analytic solutions of this or similar lattice equations are known, except for
some special cases such as the Toda lattice (1] or the Ablowitz-Ladik lattice [2]. If we
look for solitary wave solutions of (2), i.e. solutions of the form u,(t) = u(n — ct) = u(z),

(2) becomes
d2

cz—;‘§l=F(z+1)——2F(z)+F(z—1) (3)
with F(z) = V'{u(2)}. Although we cannot solve this equation analytically, except in
some special cases, it is possible to solve it numerically by a variety of methods. One
technique which turns out to be efficient and accurate is the spectral collocation method
[3]. If we use this together with path-following methods, we can generate a whole family of
solutions to (3) as one of the parameters, such as the wave speed c, varies. A general survey
of spectral methods can be found in {4]: for an introduction to continuation methods see
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[5]. One important point to note is that (3) has a continuum of periodic solutions as
well as a solitary wave solution, and that it is necessary to pick out the solitary wave by
imposing an extra integral condition which ensures that u(z) — 0 as |z| — oo [3, 6).

Finding a solitary wave solution to (3) tells us nothing about the stability of such
a pulse as a solution of the full time-dependent problem (2), nor whether it possesses
approximate soliton properties on collision with other waves (we do not expect to find
ezact soliton properties except for some special cases as mentioned earlier). To investigate
this question, we need to integrate (2) numerically. Conventionally this has been done
using Runge-Kutta methods. Recently Duncan et al. [7] have developed symplectic solvers
for lattice equations which conserve the Hamiltonian of the system to a high degree of
accuracy. Their results should be read in conjunction with those described below.

Fig. 1 shows a numerical integration of (3) with two solitary waves as initial conditions,
prepared by J A Wattis.

Figure 1: Collision of two solitary waves in the V(u) = (u? + u*) lattice

The solitary waves emerge from the collision region with almost the same energy as
before, with only a small oscillating tail left behind. For the rest of this paper we shall
use the words “solitons” and “solitary waves” in a loose and interchangeable manner.

2 Some Applications

In [3] we considered the Toda lattice as a numerical test, and a lattice with V(u) =
1(¥® 4+ u*). A more complicated example we consider below is the “electrical” lattice
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model worked on by Remoissenet and Michaux [8]. This is an electrical transmission line,
which in the absence of loss terms has the equation (in dimensionless coordinates)

&

Q) = Vara = 2V + Vo, (4)

where the charge @ is a nonlinear function of the voltage V.

The original motivation for our interest in lattices was a study of Davydov solitons on
protein molecules [9]. A typical lattice equation from the semi-classical theory for such
models is

L d
zh—d—t—a" = Eoan — J(ant1 — an-1) + X(Bnt1 — Pn-1)tn

d?

Mgt';ﬂn = w(ﬂn—l-l - 2ﬂn + ﬂn-—l) + X('anlz - 'an—llz) (5)

Here |a,(t)|? is the probability of finding a quantum of bond energy at site n, £,(t) is
the longitudinal displacement of the nth amino acid in the protein, E/#, J, x, M and
w are real physical constants. We have not yet developed the code to treat coupled
systems of equations of this complexity, but this presents no problems in principle, except
as discussed below. A simpler approximation to this system which has been studied by
various authors is the so-called Discrete Self-Trapping (DST) equation [10], which with
nearest neighbour couplings becomes a discrete Nonlinear Schrédinger (DNLS) equation

l’c%A,, -+ "/,A,,IZA,. + €(A,.+1 + A,,__l) =0 (6)
Here A,(t) is complex, and v and € are real parameters (not necessarily small). Finding
travelling waves for this system is more difficult that the normal lattice equations, since
in general a travelling wave will be a travelling wave envelope modulating a carrier wave
travelling at a different velocity. This problem is treated by Feddersen elsewhere [11].
Solving the Davydov equations will be even more involved.

A more straightforward extension of the basic method described in the Introduction
is to treat simple 2D problems. For example, we can generalise (2) to a 2D square lattice

d2
-C-lﬁu"‘"‘ = V'(Unt1m) + V' (tn1,m) + Vl(un,m+1) + Vl(un,m—l) — 4V (up). (7)

Looking for a travelling wave solution, with wave front at an angle 8 to the m—axis, we
use Up,,(t) = u(ncosd + msind — ct) = u(z) to get the equation corresponding to (3)

(cf. [12))

d*u(z)

2
¢
dz?

= F(z +cosf) + F(z —cos ) + F(z +sin0) + F(z —sin8) — 4F(z)  (8)

This can be solved with the same techniques as above. It is straightforward to show that
u(z) satisfies the same integral constraint as in the 1-D case, i.e.

cz/j;u(z)dz:/_o;F(z)dz 9)
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Another, more anisotropic 2D lattice, is the following, first suggested by Zakharov [13]

d2

2
dt2 VUn,m Untim — 2vn,m + VUn-1,m +e€ (vn,m+l - 2vn,m + vn,m—l)

—aez(vrzz-!-l,m - 2v3,m + UZ-l,m) (10)

Here € < 1 is a small parameter and a is an O(1) parameter. The lattice has a weak non-
linearity along the n-axis and has weak linear coupling in the m direction. It can be shown
that in a particular continuum limit this lattice becomes the Kadomtsev-Petviashvili (KP)
equation.

(24v; — 24avv, + Vy25); + 12040 = 0, (11)

3 The “electrical” lattice

The simplest version of the model (4) is to take Q(V) = V — aV?2. Since a can be taken
out of the calculation by a rescaling of V, we take ¢ = 1. The solution of the equation
corresponding to (3) proceeds in a similar way to the cases described in (3}, and Fig. 2
shows the results of the calculation. In this figure, the solid line shows the height of the
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Figure 2: V(0) v. c for the quadratic electrical lattice.

soliton as a function of ¢ from the numerical calculation, and the dashed line shows the
continuum approximation to the solution, which takes the form V(0) = 2(1 — 1/¢?) for
the given Q(V). For small amplitudes the agreement between the two is seen to be good.

When the velocity is close to 1, the numerical calculation fails, because the soliton width
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is of the same order as that of the periodic boundary conditions (this could easily by
cured by working on a larger interval). However the program also failed near the upper
end of the curve, where V(0) gets close to 1. In this region the number of Fourier modes
required to ensure accuracy grows very large, and eventually for large enough ¢, above
¢ ~ 1.172, no solution can be found. If the solutions are plotted out for various values
of ¢, the cause of the problem becomes obvious. Fig. 3 shows such a plot, for solitons
corresponding to ¢ &~ 1.024, 1.068, and 1.172 respectively.

05 T
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Figure 3: V/(z) for various values of ¢ for the quadratic electrical lattice.

It is clear that, as the soliton gets bigger (and faster), it develops a sharp peak. In
other words the calculations suggest that second derivative of V at z = 0 is blowing up as
V(0) — %, and above this height and corresponding velocity, no solutions of the travelling
wave equation exist. It is suggestive that the blowup occurs at a value of V' corresponding
to a maximum of Q(V). Also a solution of the form V ~ 1 — C|z| for some constant C
has the right type of singularity, and the corresponding @ is well-behaved at this point.
However, we have not yet succeeded in proving any firm results along these lines.

Although of mathematical interest, this behaviour may not be physically relevant,
since the approximation Q(V) = V — aV? is invalid at these values of V. We repeated
the calculation with a better approximation, Q(V) = V — 0.18V? + 0.021V3 — 0.0021V*
(constants supplied by M. Remoissenet). The results were qualitatively the same as
those shown in Figs. 2 and 3, with blowup near ¢ = 1.216,V(0) =~ 3.98, close to the
value of V (= 4.11) at which Q(V) has a maximum for these parameters. In a final
effort to avoid blowup, Remoissenet supplied an even more accurate fit to @, @(V) =
V —aVi4 V3 — VA 4 dV5 — eV8, with a = 0.19086, b = 0.0223199, ¢ = 0.00166791, d =
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0.749668 x 10™%,e = 0.159795 x 107°. When the program was rerun with this new
Q(V) we again recorded a blowup phenomena similar to Figs. 2 and 3, this time at
¢ = 1.433,V(0) ~ 9.265, again close to the value of V' (= 9.86) at which Q(V) has a
maximum. However, these values of the scaled variable V lie outside the physical range
of the electrical components involved in the network.

4 2-D results

4.1 The V(u) = 3(u? + u?) lattice

We can solve (7) with a simple extension of the methods used in 1D (of course the resulting
advance-delay equation (8) is still one-dimensional, but there are now two delay constants
and two advance constants). One interesting point revealed by (8) is that when 6 = = /4,
the equation reduces to the usual 1-D model except that 2 is scaled by /2. This means
that any solitary wave solution of the 1-D equation will also propagate at /4 to the axes
with the same velocity and height but with a width reduced by a factor of /2.

For fixed 6, the curves of u(0) v. c look very like the 1-D case, c.f. Fig. 2 in [3]. For
values of § between 0 and 7 /4, the height of the solitary wave is slightly greater than for
one travelling along an axis with the same velocity. Fig. 4 shows a graph of u(0) v. 9 for
solitary waves with fixed ¢ = 2.

1.7 -
u(0)
1.6 4
0
1'5 T T T T 1
0 20 /10 3m/20 5 w4

Figure 4: u(0) v. 6 for the V(u) = 1(u? + u*) lattice, c = 2.

This graph is symmetric around 6 = 7 /4 and periodic with period /2. The graph
is not quite symmetric around 7/8: a study of a continuum expansion shows the same
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qualitative features. Another interpretation is that solitary waves travelling at angles
between 0 and 7 /4 with fixed height will travel slightly slower than those travelling along
an axis or a diagonal.

4.2 KP lattice

For the problem (10), the 1-D technique again carries over simply to the 2-D case. This
time there is no symmetry except the trivial one for rotations through #. In the limit
0 — w/2, where 9 is the direction of propagation relative to the “nonlinear” n-axis, we
expect no solutions, since the equation reduces to a linear 1-D problem. For § = 0 the
equation reduces to a 1-D problem with V(v) = v? + kv

A continuum calculation suggest that ¢ — cos @ as the pulse amplitude — 0. Fig 5,
taken from [13], shows the results of calculations giving a plot of pulse height against ¢
for various angles of propagation to the n-axis. The solid line shows the numerical result,

1600
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400 A

Figure 5: Hpyse v. c for the KP lattice

whereas the dashed line shows a heuristic formula v(0) =~ (c? — cos?0)Q(0)/ac? cos? 4,
where Q(w) is a universal function with Q(0) ~ 1.3977. This fit to the pulse height, de-
rived from a modified asymptotic formula, is surprising good, although the corresponding
pulse shapes are not accurate, except in the limit ¢ — oo.
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A SYMPLECTIC SOLVER FOR
LATTICE EQUATIONS
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Department of Mathematics, Heriot-Watt University
Edinburgh EH14 4AS, Scotland

Abstract

We describe an Ordinary Differential Equation solver for lattice dynamics equa-
tions in Hamiltonian form, which is more accurate, more efficient and easier to
programme than the commonly used Runge-Kutta methods. An important feature
of the solver is that it preserves the symplectic nature of the differential equations.
We illustrate the application of schemein a variety of examples of one and two space
dimensional lattices, including the Toda lattice and a discrete version of the K.P.
equation. We also show some comparisons with standard Runge-Kutta methods.

1 Introduction

We describe an Ordinary Differential Equation solver for lattice equations which can be
written in the form
d? i}

372'%' = —‘a“I;G(ﬂ) (1)

for integers j, where ¢; is the displacement of the jth lattice point from its equilibrium
position and ¢ is a vector containing the g;’s. For example, the choice

d2 ! !
Gl@)=2V(ei—g-1) = 250 =V{% =)= V(35— g-1) (2)
J

for integers j, where V(Agq) is the potential. The well-known Toda lattice [9] is obtained
with potential V(s) = aexp(—bs)/b+ as where a,b are constants and a,b > 0. It is also
common to see (2) written as

&2

225 = V(sia1) =2V(s5) + V'(s51) ®3)

for integers j, where 8; = ¢; —¢;_1 is the deviation of the bond length from its equilibrium.
The extension to lattices in more than one space dimension is straightforward.

The rest of the paper is organised as follows. In section 2 we describe the symplectic
Ordinary Differential Equation solver and compare its structure with the commonly used
explicit classical Runge-Kutta method. In section 3 we describe the results of a series
of experiments to evaluate the accuracy, Hamiltonian conservation and efficiency of the
symplectic solvers applied to lattice equations in one and two space dimensions.



152

2 Symplectic ODE Solver

In recent years, much effort has been devoted to the development of solvers which preserve
the symplectic properties of Hamiltonian systems of Ordinary Differential Equations. Sur-
veys of this work can be found in [8] and [2]. Briefly, the main arguments in support of
these methods are: the symplectic property determines much of the Hamiltonian dynam-
ics and so should be preserved by the approximate solver; symplectic methods produce
approximate solutions which stay close to the exact solution manifold over very long time
periods; in general, although they do not exactly conserve the Hamiltonian and other
quantities, they approximately conserve them to high precision with little change over
long time periods (see [6] for example). The main reason that they are not in common
use (apart from the fact that they are not yet widely known) is that the easily obtainable
symplectic schemes are fully implicit Runge-Kutta methods, which are very computation-
ally expensive since they involve the solution of systems of nonlinear algebraic equations
at each time step. However, the special form of the lattice equations we are considering
allows the use of a very cheap symplectic scheme which does not suffer this drawback.

We adapt a fourth order accurate, fixed time step, symplectic algorithm described in
[1, 10] for lattice equations. We concentrate on one dimensional lattices, and the extension
to two dimensional lattices is obvious. This scheme is designed for ODEs with a separable
Hamiltonian form i.e.

) 9 . :
pi=—-7—H(pg , ¢=5—H(pg with H(p,q=Fp) +Glg.- 4
dq; Jp;

The lattice equation (1) can be written in a particularly simple, separable form as
. . . 1
pi=—5-Gla , G=p with Hpg=Gg+ 52(1’;‘)2 . (5)
q; i
The symplectic scheme to advance the solution from time nr to (n+ 1) using a fixed
time step size r is written in pseudo-code as
(a) For all j do ¢; := ¢; + bip; .
(b) Fors =2,...,4 do

(b.1) For all j do p; :=p; + a,A4;(q) .
(b.2) For all j do ¢; := g¢; + b,p; .

where 5
Aj(g) = _EEG@

and the constants b,,a, are given by
ay=as=71(2~ 2P, ay=r(1 - 22371,

by = by = ‘r(2 + 21/3 + 2_1/3)/6, by = by = T(l _ 21/3 _ 2—1/3)/6 )

At the start of step (a), the vectors p, ¢ contain the values of approximate solution at time
n7 and at the end of step (b), they contain the approximate solution at time (n + 1)r.
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The symbol := indicates that we evaluate the right hand side and overwrite the storage
locations on the left with the result. It is important to complete step (b.1) before starting
step (b.2).

The computational cost of the algorithm is dominated by the three A(q) evaluations
required for each time step and the main storage requirement is space for two vectors
p,q. In comparison, the Classical 4th order Runge-Kutta method, which is often used
in the solution of lattice equations, uses four evaluations of vector function A(g) and a
large number of other vector operations each time step. If we use a simple coding of the
Runge-Kutta method, then the storage required is 5 pairs of vectors the same size as p, .
With more complicated coding and at the expense of vectorisation, the storage can be cut
to 1 pair of vectors. The symplectic scheme requires fewer auxiliary calculations also and
the net result is that it is cheaper than the Runge-Kutta on all counts. This is confirmed
in the experiments reported in the next section which showed it to take about 0.75 of the
time required by the Runge-Kutta for each time step.

3 Numerical Results

In this section we describe the results of computations designed to investigate the stability
of travelling wave solutions on one and two space dimensional lattices. In most cases we
use initial data obtained by the approximation method described in {4, 5] which uses
path following and spectral methods. We test the solver on finite lattices with periodic
boundary conditions, so that the solitary wave is in effect travelling around a ring in the
one space dimension case and over a torus in two.

We first consider lattice equations in one space dimension which can be written as (2)
and then rewritten in first order Hamiltonian form as

P =V (g —4) - V(G —g-1) » G=p;. (6)

We consider various forms of potential energy function V() including the Toda and
electrical potentials and the quartic polynomial potential

Vi(s) = 3% + Jas* . (M
The change of variables,
S =qit1—di» Ti=Piy1~P; (8)
allows us to rewrite (6) again to obtain,
rp=Vi(sjp) = 2V(s)) + V(sja) , $=r;. (9)

The direct application of the symplectic scheme to lattice equations in the non-Hamiltonian
form above is exactly equivalent to applying the scheme to the Hamiltonian form (6) and
computing s; from s; = ¢; — ¢;-.1, thus preserving the useful features of the scheme.

In all the examples tested, the Hamiltonian is conserved with considerable accuracy.
The quartic potential results with 7 = 0.01 shown in figure 1 show an apparently constant
upper bound on the error in the Hamiltonian up to (and beyond) 4 million time steps.
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Figure 1: Graph of loge(l—%gn) vs time for the symplectic solver on the quartic po-
tential showing the large time control of H(t). Parameters 7 = 0.01, 50 lattice points,

c~ 3.8.

For a given potential, the relative size of the error in the Hamiltonian is dependent on
the time step size used and the height (and hence the speed) of the initial pulse. One
would expect the relative error in the Hamiltonian to vary as O(7*) for small enough 7 in
this fourth order accurate scheme, and experiments on the quartic potential with different
values of 7 confirm this. For example, successively halving 7 from 7 = 0.04 shows the
maximum error decreasing by factors 15.5, 19.1, 17.6 etc. which is close to the predicted
value 16.

We find apparent long time instabilities in the pulse solutions of the quartic potential
problem when the initial data is perturbed slightly (actually by a mismatch between
the number of lattice points used in the path following code and in the ODE solver).
In this case, the pulse propagates as expected initially, but ripples develop after some
time, at the expense of the pulse’s height and speed. As the wave travels around the
ring it interacts with these small linear waves, accelerating its decay. This behaviour
is illustrated in figure 2, where the wave is travelling around a lattice of 50 nodes. We
should remark that initially the wave has travelled around the ring.slightly more than
three times between each plot, and at later times slightly less than three times and has
not reversed its direction (as it appears). These same examples have been calculated using
the Classical fourth order Runge-Kutta scheme where ripples also develop and a similar
picture is seen. However the Runge-Kutta scheme damps the solution causing a steady
decrease in the Hamiltonian, at first more severely, but later less so, once the soliton has
been mostly eroded. See figure 3 for a more quantitative description.
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Figure 2: Solution profiles on quartic lattice at regular time intervals with about three
revolutions between each plot. See text for details.
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Figure 3: The main graph shows the behaviour of the Hamiltonian for the Symplectic
scheme (upper line) and for the classical Runge-Kutta scheme (lower). The insets show
the solution profile at times roughly corresponding to their position on the main graph.
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s=0
=0

S=
=0

Figure 4: Phase plane portraits of a solitary wave in the lattice equation (9) with the Toda
potential using the symplectic algorithm (left) and the Classical Runge-Kutta (right).
400000 time steps shown.

A slightly different example is given by the problem of electrical transmission lines
[7, 5]. The simplest form of the equation of motion is

d?
dt?
where @ > 0. To put this into the form of equation 9, the substitution u, = w, — aw? is

used. This is not a 1-1 transformation, so we have to take care in inverting it. Solving the
quadratic and taking the negative branch, we obtain V'(u) = (1 — /1 — 4au)/2a giving,

(1—4au)d 1
VW =" tu na (1)

and we can solve this as before. The very sharp peak or cusp which appears at larger
speeds (see [5]) makes determining the initial data harder, but once it is found the sym-
plectic algorithm propagates this unusual solitary wave with little distortion and at the
correct speed. The Hamiltonian was conserved to 9 significant figures in these tests.

Another clear indication of the advantages of the symplectic scheme can be seen in
the phase plane portraits shown in figure 4. These show a solitary wave on the Toda
lattice of 32 points, sampled at the same mesh point every 10 time steps for 400,000 steps
and computed using the symplectic and Runge-Kutta methods with identical step sizes
7 = 1/8. The symplectic results are very sharp, but the Runge-Kutta results show the
solution decaying in amplitude.

Finally we turn to a two dimensional example. We examine the KP lattice described
in [3]

(wy — aw?) = Wpy1 — 2w, + Woog. (10)

d

— 13 13 I 13 » 2 v o . . r
"'i'ﬁsi.j = (Sigr5 = 2805+ Si1,5) + € (Sij4r — 2805 + Sij-1)

1
+ ZGZ(S?+1,j - 23?,1' + 3?—1,1‘)- (12)

which can be solved using the symplectic method, modified to cover all the points in
this two dimensional grid. We again show phase portraits of solitary waves in figure 5.
We use a 150 x 200 mesh with appropriate periodic boundary conditions, time step size
7 = 1/16 and waves at angles 0 and tan'(3/4) to the i-axis at speeds close to 1. The
phase portraits are again sharp over many timesteps, apart from the inner one (after
magnification) which was given slightly perturbed initial data.
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Figure 5: Phase plane diagram for the discrete KP equation on a two dimensional lattice
showing (a) & = 0,c¢ = 1.053 (b) 6 = 0,c = 1.175 (c) 0 = tan~'3/4,c = 1.054 (d)
0 = tan'3/4,c = 1.155. (Note that r = 3)

4 Conclusion

The symplectic ordinary differential equation solver we describe is a useful tool for inves-
tigations of solitary waves on discrete lattices. It is simple, efficient and accurate.
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Abstract

The existence of various solitary wave solutions to the (nonintegrable) discrete
nonlinear Schrédinger equation is demonstrated numerically.

1 Introduction

The discrete nonlinear Schrédinger (NLS) equation appears in numerous applications
of nonlinear dynamics [1, 2, 3, 4]. In these applications the nonintegrable discrete NLS
equation is well approximated by the continuous cubic NLS equation which has well known
soliton solutions [5]. A numerical time integration of the discrete NLS equation with the
soliton solution to the continuum approximation used as initial condition suggests that a
stable solitary wave may exist [6], although the resulting solution is not a perfect solitary
wave.

The purpose of this paper is to find families of solitary wave solutions to the discrete
NLS equation numerically. This is done by using a very efficient spectral collocation
method coupled with path-following and bifurcation techniques [7, 8, 9, 10, 11]. This
method allows us not only to find the expected solitary wave corresponding to the standard
NLS soliton, we also find “dark” and multiple solitary waves as well as periodic travelling
waves.

The discrete NLS equation we will be concerned with is

JdA;
= T AP A 4 A + Aja =0 (1)
with periodic boundary conditions A;1 = A;, where L is the number of lattice points.
Hence, all the solutions we find are periodic with period L. For large L we can expect to
find good approximations to solitary waves which have infinite period.

Eq. (1) has two constants of motion [12], the Hamiltonian

L
’Y * *
= Z(glAjI“ + Ajn A + Al 4;) (2)

J=1
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with the canonical variables A; and 1A}, where A} is the complex conjugate to A;, and
the norm .
N =3 |4 (3)
=1
Hence, Eq. (1) is integrable when L = 2, a nonlinear dimer [13], but nonintegrable for
L>2[14].

Throughout we will normalise Eq. (1) such that N = 1. Note that this is equivalent to
normalising the parameterless discrete NLS equation such that N = v which is sometimes
useful in the numerical calculations.

The continuous NLS equation

.Ou . Ou
reduces to Eq. (1), with v = A?, under the finite difference discretisation §?u/8%z —
(uj41 — 2u;j + uj_y)/h? followed by the gauge transformation u; = A; exp(—2it/h?) and
the scaling of time ¢ — h?%t. Here h is the distance between adjacent lattice points. Thus,
the nonlinearity 7 = h? should be small in order that Eq. (1) be a good approximation to
the NLS equation (4).
As a finite difference approximation to the NLS equation, the equation

. A + A,
e} A2 J-1
which also reduces to the NLS equation in the continuum limit is a better approximation
in the sense that it is completely integrable with soliton solutions which have been found
by using the inverse scattering method [15, 16]. However, here we will study Eq. (1) in
its own right as a model for several discrete physical systems.

+A+40=0 (5)

2 Numerical Method

We are interested in travelling wave solutions to Eq. (1), i.e., guided by the form of the
soliton solution to the NLS equation, we will seek solutions of the form

Aj(t) = A(j — ct)e'®i-vt) = A(2)e'ki=wt) (6)
where ¢/h is the velocity of the envelope of the travelling wave. The periodic boundary
conditions A(z + L) = A(2) requires k to be of the form

2rm
=7 (M

where m is an integer. With the ansatz (6) inserted into (1) we find that A(z) must satisfy
the complex nonlinear differential-delay equation

—icA'(2) + (ke + w)A(z) + 7]A(2)?A(2) + e*A(z + 1) + e *A(z = 1) = 0. (8)
The solutions to Eq. (8) are approximated by the finite series
n-1
A(z) = Y a,cos 2prz

p=0

4038, sin 2272, )
p=1 L
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where a, and b, are real coefficients which are determined by requiring that Eq. (8) be
satisfied in n collocation points with the approximate solutions (9) inserted [10]. Thus
Eq. (8) is reduced to a set of 2n real, nonlinear, algebraic equations with 2n unknowns,
which can be solved numerically by path—following methods which are based on an Euler
predictor/Newton-Raphson iteration scheme [7, 11]. It is also possible to detect bifurca-
tion points and path—follow bifurcating branches as is demonstrated in the next sections.

3 Stationary Solutions

The numerical procedure described in the previous section requires a suitable starting
guess. This can for example be a simple analytical solution or a solution to the continuum
approximation to Eq. (1). It turns out that the constant solutions of Eq. (8), A(z) = @,
are very useful as the interesting solitary wave solutions bifurcate from these solutions.
The constant solutions of Eq. (8) will be referred to as stationary solutions [12] as they
correspond to the solutions to Eq. (1)

A;(t) = ®;e~ (10)
with ®; = ® exp(ikj) and Q = k¢ + w.

By inserting A(z) = ® into Eq. (8) and using the normalisation N =1 we obtain the
following relation between the parameters for the stationary solutions:

w=—%-—kc—2cosk. (11)

In order to find possible bifurcation points we perturb the stationary solutions by a
periodic function a(2), |a(2)| < |®|,

A(z) = @ + a(2). (12)

If a(z) is expanded as a(z) = T, ¢, exp(2inpz/L) + i3, y, exp(2ixpz/ L) and if terms of
order O(|a|?) are neglected when (12) is inserted into (8) we find for ®* = 1/L, after some
algebra, that the following matrix equation must be satisfied:

[Wffn?a if”i:]:[g]’ (13)

where
2rm 27p
a = cos—p (cos—L——l), (14)
. mpc . 2mm | 27p
B = —[ —sin—p—sin—— (15)

Bifurcation points occur where the determinant is 0, i.e. when the nonlinearity + is
2

B
Near the bifurcation points the bifurcating solutions are approximately
AP (2) x @ + g/l (17)

for |¢| < |®|. Provided the size of the lattice, L is sufficiently large A®)(z) will evolve
into a p—solitary wave solution as <y is increased. This is demonstrated numerically in the
following section.
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4 Solitary Waves

The path-following method allows us to find a whole family of solutions as one parameter
is varied. In the following the varying parameter will be w while ¢ will be fixed. Fig.
1 shows paths of p = 1 solitary waves for two different velocities. They both bifurcate

from stationary solutions which are represented by the straight lines according to (11) in
the figure. The numerical solutions are obtained for n = 25 modes in the expansions (9).

2.50 W
2.00 j
1.50 -

1.00 -

050

Figure 1: Solitary wave solutions bifurcating from stationary solutions for a lattice of size
L =20. (a) c=0.5, (b) ¢ = 1. The waveforms corresponding to the three points (i)—(iii)
are shown in Fig. 2. The dashed lines show the relation between v and w for the soliton
solutions to the corresponding continuous NLS equations.

The dashed lines show the paths for the soliton solutions to the corresponding continuous
(parameterless) NLS equations. These solutions are given by [17]

A(z,t) = Qsech(%)ei(cz/z_“'t) (18)

where z = z — ¢t and Q* = ~2(w + 2 + c?/4) > 0. The relation between v and w is found

)= /_:" |A(z, 8)Pdz = 4y/—(w + 2 + &2/4). (19)

Since all solitary waves in the discrete NLS equation (1) appear to bifurcate from
stationary solutions we will consider the occurrences of the bifurcation points. The non-
linearity v will everywhere be assumed positive. For p = 1, v (as given in (16)) is positive
only for the integer m nearest (L/27)Arcsin(c/2) when k < 7/2. For ¢ > 2 and k < x/2
Eq. (16) yields a negative value of 4. Hence, there are no (“bright”) 1-solitary waves for
¢ > 2, i.e. the maximum speed of the (bright) 1-solitary wave is 2/ [18]. This result also
holds for the integrable, discrete NLS equation (5).
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For 7/2 < k < 37/2 we find a number of 1-solitary wave solutions to Eq. (1), but
they are all “dark” solitary waves. An example is shown in Fig. 4. Corresponding dark
soliton solutions to the integrable, discrete NLS equation have not been found.

Consider the ¢ = 1 solitary wave solution (Fig. 1) to the discrete NLS equation. The
waveform for different values of 7 is shown in Fig. 2 while Fig. 3 shows the result of a
numerical time integration of Eq. (1) where the initial condition is taken as the “middle”
one of the computed waves in Fig. 2. This time integration shows that the collocation
method gives a very accurate approximation to a solitary wave and that the actual solitary
wave is stable.

030 T
024 T
(D)
018 +
o
S )
<
0.12 T
@)
0.06 T
] JI; { T i
4,00 8.00 12.00 16.00 20.00

z

Figure 2: Waveforms of the solutions corresponding to the points (i)-(iii) in Fig. 1.

To get an indication of the rate of convergence of the solitary wave solution as the
number of collocation points and modes, n in the expansion (9) is increased consider Eq.
(8). This equation is only satisfied if the numerical solution (9) is exact. If it is not exact
then the 0 on the right hand side of Eq. (8) will be replaced by a function r(z) which is
0 in the collocation points. Fig. 5 shows how the numerical solution converges when n is
increased. Here the error of the numerical solution is defined as max(|Re[r(2)]|, |Im[r(2)]]).
The graph clearly suggests superalgebraic convergence [11].

Eq. (1) is not completely integrable. One implication of this is that the solitary wave
paths stop at some point as + is increased so solitary waves only exist for sufficiently small
values of 4. For the two examples in Fig. 1 numerical calculations show that the paths
stop at ¥ = 2.4 for ¢ = 0.5 and at v =~ 1.8 for ¢ = 1.0.

Finally, Fig. 6 shows an example a double-solitary wave solution to the discrete NLS
equation (1). This solution has been found using the procedure described above, i.e. it
bifurcates from a stationary solution. A numerical time integration of Eq. (1) shows that
this solution is stable.
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IA(0) 2

Figure 3: Numerical integration of the discrete NLS equation with the wave (ii) as initial
condition showing a perfect solitary wave propagating with speed ¢ = 1.
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Figure 4: “Dark” solitary wave. L = 20,c=1,m = 9,w = —1.21,y = 4.9.
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Figure 5: The error of the numerical solution as a function of the number of modes
suggesting superalgebraic convergence.
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Figure 6: Double solitary wave. L = 40,c=1,m = 3,w = —2.42,9y = 2.9.
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ASYMPTOTIC BI-SOLITON IN DIATOMIC
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Abstract

The light scattering in a diatomic chain of nonlinearily coupled oscillators is
studied on the basis of classical Hamiltonian equation of motion in the continuum
limit. The basic process is a localized Brillouin scattering and we prove that the
nonlinear interaction of the light-wave with the phonon-wave results in a strong
localization and a mutual trapping of the acoustic wave and the reflected light
wave. This is shown to corresponds to the exchange of a given acoustic particle
whose energy and momentum depend only on the elastic parameters of the chain.
‘We conclude that the nonlinear coupling induces the existence of a new energy level
which value does not depend on the initial condition or any other external constraint
or parameter. The asymptotic state consists in a sonic wave front followed by two
localized structures which eventually coalease onto the wave front.

This report is a shortened version of [1] completed with a more detailed discussion of
the asymptotic behavior of the generic solution and some figures.

We study the nonlinear effects in one-dimensional sytems of coupled oscillators, which
is an essential problem in physics and biophysics (hydrogen-bond systems) [2]. Many
phenomena (proton conductivity in ice [3], anomalous infrared absorption in crystalline
acetanilide (ACN) [4], lossless energy transport along alpha-helical proteins [5]) are sus-
pected to be related to the nonlinear nature of the interaction of two different types (HF
vs BF) of vibrations along quasi one-dimensional chains of atoms or molecules.

We consider here the classical model of a diatomic chain of nonlinearily coupled oscil-
lators represented as the following diatomic chain (the vertical axis represent a reference
equilibrium frame), with the three elastic parameters wp, S/M and s/m:

a

)

—_—

R

s\

c
3

An

n+1
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The oscillators u, (low frequency) represent the motion of the molecule in the crystal
(acoustic phonons) and they are associated with the hamiltonian:

1
Hy = §ZM112 +S(tni1 = un)’ + S(un = tn-1)’ 1)

where M is the mass and S the spring constant accounting for the hydrogen bond. The
index L stands for Lattice.

The oscillators ¢, (high frequency) represent the motion of one atom (or group of
atoms) of the molecule (optical mode) and they are associated with the hamiltonian:

1 .
Hy = §Zm[qi + wa @2l + 5(gns1 — @)* + (g — n-1)’ (2)

where wp is the frequency of the isolated oscillator and where the spring constant s allows
for the propagation of the vibration ¢, along the chain. Here the index V stands for
Vibration.

Both oscillators are nonlinearily coupled through the following interaction hamiltonian

[5’ 6’ 7}
1 Ci )
Hp = 527(%&1 - un—l)qn, + Cz[(un+1 - un)qn+1 + (Un - un—-l)qn—l]qn (3)

where C; and C, are the interaction constants.
The equations of motion result in the following coupled system

oH . 0H
_au y M = — 75— H = Hy + Hy + H;. (4)

The masses M and m, together with the spring constants S and s, are in quite different
scales which allows us to define a scaling parameter € as (see also (12) below):

Sm
2

=——. 5
€ =27 (5)
Now we can precisely state the problem we are concerned with: describe the nonlinear
dynamics of the scattering of light (the incident radiation is represented by a forced

oscillation of ¢, at, say, n = +00) at a frequency close to wp, in the case when € < 1.
The process which we consider is the Brillouin back-scattering of an incident wave

(w, k) according to the following selection rules:

w=Q0+w, k=K+k,, (6)

Miu, =

where (2, K) is the sound wave (with dispersion law @ = vK for small wave numbers,
consistently with the continuum limit later adopted) and (wy, k) is the back-scattered
wave (therefore k, ~ —k, and hence K =~ 2k).

We will prove that the reflected wave is localized, and hence the back-scattered wave
is not directly observable, bounded to the acoustic wave, and that the three waves do
obey (6) according to the following actual distribution:

w = 00 - + w®+Qp

k KO —-Kg + kO 4+Kp (7)
Incident Acoustic Reflected
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where we have defined
QO =K@ KO =2k w®=w-0O ;O =_k (8)
g =2¢*w, Kpg=Qg/v. 9)

The word incident indicates a wave propagating from right to left (the input zone is
n = +00), and w is the free parameter.

As a consequence, the nonlinear coupling of the vibration ¢, with the acoustic phonon
u, results in the exchange of the energy Q5 and momentum Kp (obeying the dispersion
law of the acoustic wave), which then can be thought of as representing a binding acoustic
particle. The shift in frequency (5 =~ 2¢®wp) depends only on the elastic constants of the
chain and not on the coupling constants or any other adjustable parameter as the energy
of the acoustic soliton.

Starting with the equation of motion (4), we first go to the continuum limit and obtain
the following system of coupled wave equations:

Gt — C2QI:: + wg q = —QUzq, (10(1)
Ut — vzuzr = ﬂqrq, (IOb)

where we have defined

s S a a
C2 = azg, '02 = G,ZM, o = (Cl + 2C2)E, ﬂ = (Cl + CQ)M, (11)
and we have now
v v,

€ = _c- = (g =2('C') w. (12)

The above system is identical to the equation discussed in [7] where it is obtained
without the approximation of a nearest-neighbour interaction.

The usual approach of a coupled system like (9-10) is to assume a quasi stationary
acoustic wave u(z,t) so that u; o« ¢. Then the slowly varying envelope of the wave ¢(z,t)
evolves according to the nonlinear Schrodinger equation (NLS). As a consequence, if a
soliton solution to NLS is assumed (first problem: the mechanism of the soliton creation
is not described) it has a non-zero phase and the resulting phase of the wave ¢(z,t) is
shifted from its value 2(®) of an amount depending on the soliton energy (second problem:
the soliton energy is a free parameter).

Here we perform a multiscal analysis [8] on the system (9-10) by looking for small
amplitude, slowly varying envelope solutions under the form:

q(z,t) = eay(€,7) exp [id1] + €az(€,7) exp [idg] + c.c.+

+ i c"agn) (&,7)exp [ind1] + c"ag")(f, T) exp [ingy] + c.c. | (13.a)

u(a:, t) = C\Ill(fa T) exp [z¢] + 62\110(6, T)+
+ 3 (€, 7) explind] +ce. (13.)

n=2

dr=wt+kz, ¢ =wd+ k2, d=0t+ Kz
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£ =ex, T = €. (13.¢)
Note that the dispertion relations for the wave ¢(z,t) read

w? = wl 4K, (14)

w=wl4lE (15)

The above expressions (13) are inserted in (10) and the leading orders in € give,
after averaging over fast oscillations (which means practically: look at the coefficients of
exp [ig]):

U, - c¥ = va,a3,

(16)

A1 = \I’ag, Qe = \Il*al.
We have set hereabove
_ _af e
‘I,—cz‘I,lj 7—2031 ﬂ_eﬂi (17)

(the last definition is consistent with (11) and (5)), and we have used the selection rules
(6) together with (14), (15) and Q = vK = ecK from the very definition of e.

The relation (14) determines k from the input w. The relation (15) together with (6)
(and = vK) can be solved and we obtain

K = [2k— 262‘-;’-][1 — 2ke?] ™, (18)

which implies the relations (7),(8) and (9) for small k, at order keZ.

Since we are dealing with the problem of the absorption of an incident (electromag-
netic) wave (w, k) at, say # = +o0, with given amplitude A, we complete the system (14)
with the following boundary values

ai(é,7) = A, (€ > +00), ax(€,7)— 0, (£ = —00), (19)

and an initial condition ¥(¢,0) in L?*(R). It is worth remarking that, due to (19), the
system (16) implies the property

U(£,0) — 0, (6 = £oo) = a3(€,0) — 0, (& — +00). (20)

The essential point is now that the system (16) with boundary values (19) is integrable
in the sense of the spectral transform theory [9] (it has actually a structure similar to
that of the well known ”self- induced- transparency” equation governing the light pulse
propagation in a two level system [10]). In the spectral transform theory, the system (16)
is said to have a singular dispersion law [11] and we have developed the general formalism
for such classes of nonlinear coupled evolutions on the basis of the @ problem formulation
of the spectral transform [12] (the most general class of integrable evolutions of type (16)
is displayed in [13]).

We have proved in [2] that, for any initially localized initial acoustic wave ¥(¢,0),
the general solution of (16) has the following universal asymptotic form for » — +oo: it
vanishes for € + ¢r < 0, and, for £ + cr > 0 it obeys

a1 = AL+ n(€, )]l1 ~ In(¢, )17, (21)
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2 = 2idn(g, ML~ (6, D1, (22
¥ o iy 2 (e = (6 ) (23)

where the function 7(§, 7) is given by

n(€,7) 2zp‘/— [2 A+ O(y™™)] exply/2),

Ag=1, A, =-27/16, A, =28385/2°, A;= —2589825/2",

Y€1) =8y Ar(€+er), A=|AP/4 (24)

It is then an easy task to go back to the physical solution u(z,t), ¢(z,t) of the system
(10) by using successively (17), (13) and (12). So we have at first order in € and for large
t and for z > —ut:

g(z,t) = eAexpli(wt + kx)] 1t mz +
+2icAexpli(w® + Qp)t +i(k@ + KB)x]I{l‘n—l2 +ec (25)

u(z,t) = —4ie—‘;

A . . i
: 1;1_ expi(Q® — Qp)t + (KO — KB):B]I—:T]TW +c.c. (26)
while for ¢ < —vt
q(z,t) = eAexpi(wt + kz)], wu(z,t) =0. (27)

The above behaviour of the solution allows us to deduce the following properties of
the system of coupled wave equations (10):

1- The frequencies and wave numbers of the waves ¢ and u do obey the relation (7):
the scattered part of the electromagnetic wave g and the acoustic wave u have exchanged
the acoustic particle (g, Kp).

2- Although these asymptotic behaviours present singularities (for |7|* = 1), the so-
lution (g, u) itself is never singular (the saddle point expansion becomes exact only for ¢
strictly infinite).

3- The localized wave u(z,t) has been created out of the continuous spectrum and
it has the structure of a sonic wave front followed by two supersonic localized coherent
structures which eventually reach the wave front. The scattered light wave is bounded to
these localized structures.

We have drawn in the figures 1 to 3 the acoustic wave u(z,t) in the rest frame of sound
wave (moving at velocity —v) for the following choices of the parameters:

v = 3800ms™!, c¢=>56000ms™?, K =100cm™!

YNAP=0181., ac?=181 p=001

at different times (from 10 to 10*).

These parameters have been chosen for representing the crystal of acetanilide. These
values imply that the nonlinear binding mode has a frequency of 15¢m™'. Actually the
value of ¢ (velocity of the propagation of the Amide-I vibration) has been inferred from
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the value of Q5. The good point is that this value of ¢ lies in the range of acceptable
values.

For the fig. 1 we have taken the saddle point expansion at order 1 (that is N =1 in
(24)), for the fig. 2 at order 2 and 3 for the fig. 3. Then it is clear that indeed there is a
bisoliton (or bicaviton) stucture, which appears better at order three.

Finally the proof that the expansion converges as t — oo can be inferred from the
figure 4 where we have drawn (solid lines) the curves

N
fu(y) =12 Ay "y (28)
n=1
(see (24)) for different N. The dashed line is the curve
'YIA|2 2,2 —y
VAP , 2

The intersections of (28) with (29) give the positions of the singularities of u(z,t).

It is clear that all curves (28) have for NV > 1 two asymptotes, and therefore that at
any order except the order 0, there exists a time ¢,, such that, for ¢ > ¢, the solution is as
close as we want to the solution at next order. This proves both the convergence of the
series and the fact that the asymptotic solution consists always in two nonlinear coherent
structures, see also [14].
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NONLINEAR DYNAMICS OF LOCALIZED STRUCTURES AND PROTON TRANSFER
IN A HYDROGEN-BONDED CHAIN MODEL INCLUDING DIPOLE INTERACTIONS

I. CHOCHLIOQUROS and J. POUGET
Laboratoire de Modélisation en Mécanique (associé au CNRS)
Université Pierre et Marie Curie
4 Place Jussieu, 75252 PARIS Cédex 05
FRANCE

Abstract : The transport of energy in H-bonded chains is really an extremely impor-
tant problem, because of its close connection with basic phenomena in biological
systems. We consider a lattice model which is made of two one~dimensional harmoni-
cally coupled sublattices corresponding to the oxygens and protons, the two sublat-
tices being coupled. The study becomes more interesting when we introduce the
dipole-dipole interactions. As a microscopic dipole is created by the proton motion,
it may affect the response of the nonlinear excitations propagating along the chain.
We are looking for a solution for which the motion of oxygen ions can be neglected.
A ¢ equation is found , which admits nonlinear excitations of solitary wave type.
We distinguish different classes of solutions for the description of the proton
motion. Analytical expressions and the necessary conditions for the existence of
these types of solutions are given. The introduction of the dipole interaction
produces an influence on the electric field of the system which means that the
proton motion is also affected and this makes the proton conductivity much easier.
Numerical simulations are presented for special cases. Finally, possible further
extensions of the work are discussed.

1.- INTRODUCTION.

Among the whole variety of condensed-matter systems where the soliton concept can be
used are quasi-one-dimensional molecular systems in biology [1]. The transport of
protons in H-bonded chains is a very interesting problem since it can explain funda-
mental properties of life [2]. It can be also used in order to explain proton mobi-
lity and electric conductivity in ice [5,9,10].

The aim of this work is to study the influences of the dipole-dipole interactions on
protonic conductivity in H-bonded chains. At the same time an analytical study of
the nonlinear dynamics of the proton motion is also proposed.

In order to reach our goal we construct a one-dimensional lattice model based on the
Antonchenko-Davydov~Zolotaryuk model [3], for H-bonded chains. From previous scien-
tific works [4,6,7,8], there is already a satisfactory number of results both analy-
tical and numerical, which contribute to the validity of the ADZ model. This model
was really a successful attempt to approximate and explain mechanisms which occur in
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the atomic scale study. We also introduce the interatomic potentials involved in the
model and we include -the important point of our work- the dipole interactions due
to the proton motions. The existence of electric dipoles along the chain may affect
the response of the system and the proton conductivity becomes much easier. Since
the discrete system is not manageable, we are faced with the continuum approximation
of the microscopic model.

After some calculations we find a ¢ equation. This means that now we have the pos-
sibility of many localized solutions, according to several selections and condi-
tions. The protonic conductivity is caused by ionic and orientational defects as [1]
explained in previous works. What is important to note here is also the possibility
of many further extensions of the work.

2.- CONSTRUCTION OF THE MODEL.

The model consists of two one-dimensional interacting sublattices. These are the
proton sublattice and the heavy-ion sublattice as shown in Fig.l1l. Protons and "oxy-
gens" are harmonically coupled.

n-| n n+l

Fig. 1 : One-dimensional lattice model for a hydrogen-bonded diatomic
chain. (a) harmonic potential for heavy ions and
(b) double-well potential for protons.

Each proton lies between a pair of heavy ions usually called as "oxygens". There are
covalent and hydrogen bonds connecting proton with the two neighbouring oxygens.
When a proton moves from a position closer to the one of the oxygens to a position
closer to the next one, then the two bonds exchange their positions. The double-well
acting on protons and allowing this jump can be approximated [11] by the expression

Uly,) = € (1 - y2/32)" . (1)

A schematical representation is given in Fig.l. In Eq.(1), y, denotes the displa-
cement of the n-th proton with respect to the center of the oxygen pair in which it
is 1located, €, is the potential barrier and 2y, is the distance Dbetween the two
minima of the double-well potential. The coupling between oxygens and protons can
provide a mechanism [6] which changes the potential barrier that protons have to
overcome to jump from one molecule to the other and makes their motion easier.
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3.- EQUATIONS OF THE MODEL.

The total Hamiltonian of the system is
H =H+ H+ H o+ Hy - (2)

The proton part of the Hamiltonian is

B, = 3 [he 0ls,) ¢ 502 (vam w07 3)
n

The first term denotes the kinetic energy of each proton, the second is due to the
double-well potential while the last term represents the harmonic coupling with the
characteristic frequency w, between neighbouring protons (m is the proton mass). The
oxygen part of the Hamiltonian can be written as

n, = S [me SR e S (v, - w7 )

n

Here we consider only the relative displacement w, of an oxygen pair, because a
possible variation of the 0-0 distance can modulate the double-well undergone by the
protons. The first term of H  denotes the kinetic energy of oxygens, the second term
denotes the coupling between oxygens of the same cell while the third term describes
the harmonic coupling between neighbouring oxygen pairs and introduces in the model
the dispersion of an optical mode (©, and ; are characteristic frequencies of the
optical mode, M is the oxygen mass).

The Hamiltonian H, ., is derived from the dynamic interaction between the two sublat-
tices and describes how the double-well is modulated by the variation of the 0-0
distance. It is written as in ADZ model [6]

Hlnt = Z swn (yi— y(z)) * (5)
n

Its physical meaning is the lowering of the potential barrier due to the oxygen dis-
placements. (& measures the strength of the coupling and determines the amplitude of
the distortion in the oxygen sublattice).

The Hamiltonian H,, is derived from the dipole interactions. The existence of elec-
tric dipoles in the chain, because of the electric charges, leads us to account for
the mutual interaction betweeen the dipoles. In the present case, we assume that the
distance r between neighbouring dipoles does not depend on the lattice displacement
and all vectors of the dipole moment P, are in the same direction (all are alli-
gned). We find that



Hdd = B z PnPnol * (6)

{ B is a constant which may account for the environment of the chain). The dipole
moment induced by the proton motion must be zero when proton is at either position
of the oxygens or when it is at the middle of the distance joining the oxygen pair
where the interactigns are opposite. The law which the dipole has to agree with is

presented in Fig.2.
‘
@ SN §
F31

P

Fig. 2 : Dipole as a function of the
proton position with respect to the
neighbouring heavy ion positions.

The simplest form for the dipole moment P to approximate the structure of the curve
in Fig.2 can be given [12] by a polynomial of the third degree

P, = a(x,- X )(x,- X, )|x, - %(xn»f xml)]. (7N

(Where ais a constant). The absolute positions xnand Xn are shown in Fig.l and we
have

1
Xn = n£0+ Eeo+ Yo o Xn= n£0+ Yo Xn01= (n+1)£o+ Wosr ¢ (8)
We note that £, is the lattice spacing. The equations of motion of the system form a

set of coupled nonlinear differential-difference equations which derived from the
Hamiltonian (1) and takes on the form

d?y_
dt2 = wf'(yn01- 2yn+ yn-—l) + (qeo/myg) (1 - yfl/yg)Zyn- (zs/m)wnyn
_oP,
- B 5 (Bt Py (9a)
d2wn
d 2 = Qf(wn‘l_ 2Wn+ wn-l) - ngn— (S/M) (yi“ yg)
t
_ 9P, _ 9P _,
-8B 5;— (Pn¢1+ Pn-l) -8B dw (Pn+ Pn-Z) ° (9b)

We study that case in which the heavy-ion sublattice can be considered as "frozen".
The motion of the oxygens is not remarkable as the motion of the protons, which is
very important. This approximation is related to the inertia of the oxygen sublat-
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tice which cannot follow the fast proton motion especially for large velocities and
suggests that a solution could involve only the proton displacement while oxygens
stay at rest and do not participate in the motion. We can assume that w is very
small compared to y. In the atomic lattice y is of the order of few A and for this
reason we can suppose that w is almost zero.

Now we consider only the Hamiltonians H, and H,,. We introduce the units E, for
energy, t, for time and ¢, for length. We find the derived units mo=Eotg/£g for mass

and f,=€ /£, for force. We introduce the dimensionless parameters E=m/mo, €=€0/Eo ,
- -2 ~ ~
X, =8 a £g/Eom. We also consider u,=y_/£,, H = H/m¢?. The expression for the energy

of the system becomes

(I

- 1.2 1 1
H = Z[g“n + wa(un,l' un)2+ EG"U‘Z’ (1 - uﬁ/ug) - XPanl] . (10)
n

where the electric dipole is merely given by

P = un(uﬁ- 1/4 ) . (11)

n

The equation of the discrete system describing the proton motion reduces to

u = w? (u

n 2un+ un-l) * Goun (1 - ui/ug)

nel

+ x(3u§- 1/4)[un_1(u:_1— 1/4) + un*l(uﬁ*l- 1/4)]. (12)

Where we have previously set G =lde,/Liul and x=x,E,/mf:

4.~ CONTINUUM APPROXIMATION OF THE DISCRETE SYSTEM.

Further step to the somewhat rough simplification consists of considering the conti-
nuum approximation. The equation of the proton motion -if we consider terms up to
the second order- can be written as follows

2
utt-[l + x(3u?- 1/4) ]uxx- au + g uw-vu =0, (13)
where we have set

o, = G+ x/8 , 8,= G, /ui+ 2x , v, = 6x . (14)
We can notice that all three parameters &,, 8,, v, depend on X, which x is also pre-
sent in the factor accompanied u, . This last remark makes further investigation
extremely difficult. In order to simplify the procedure we propose the following

hypothesis : we set 1 + x(3u?-1/4)= 60 as a function of u. This function has two
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minima. For certain value of x we can find the mean value <6d> and then we set <5°>
as the coefficient of u. This rough approximation can be done when there is no great
difference between the greatest and the lowest values of the function. This occurs
if the coefficient x is considered small enough such that |xl<<l. We now set <5°>=uP
and the equation for study becomes

u - 0fu - au o+ Blu3- Y,u® =0 . (15)

We use the change of variables u=ol , t = YT , x = gX. Then we select

@ =B, /Y, . v=v/8, .8 =w,/8 (it must be 7,50, B;>0). We also set A=x;"?.

The equation for study takes on the following form

- - - 13 5
Upp= Uy = AU = U3+ U5, (16)
We are looking for localized sclutions with constant profile, moving at a characte-
ristic velocity v, that is for solutions U=U(E)=U(X-uT). We do not dwell on the
algebraic manipulations for finding out the different classes of solutions.

5.- DIFFERENT TYPES OF LOCALIZED SOLUTIONS.

The equation presents a symmetry, so when U is a solution then -U is also a solu-
tion. We can set U = U(E+o) and U,= U(&) . We distinguish different types of
solutions as we try to approach U, beginning by Ux' or the inverse.

For the solution of the type I (pulse), we have U, = U,=0. We obtain the expression

U

U=+ . (17)
[1 + Pstm® (2E/2)]"2

Where it is U2= #ha/ ([T - A/A; + 1) and P = 2[1 - A/A,/({T - A/A, % 1). The sign (+)
corresponds to supersonic waves (|v|>1) and for this case we have also the condition
0<A<(3/16). The sign (-) corresponds to subsonic waves {Ivi<1) and for this case it
must be necessarily considered A<O. In both cases we have A =(3/16) and
P= 4Aa/(v2-1) .

The solution of the type III presents a kink. In this case we have two opposite non
zero values (U1=U0, U,=-U,). The expression becomes

+ U, tanhz
U = . (18)
1/2
[1+ P(l—tanhzz)]/

Where it is z=(1/2)QE , P= U3/(2U3- 3/2) , o®= 42 (U3~ 1/2)/(v?*- 1) . U, is defined
4+ 2 ) .
by (Ug) = (1= N1 - JA)/2 , where the sign {+) corresponds to supersonic waves (it
must be additionally A<(3/16) and A=0), and the sign (-) corresponds to subsonic
waves (for the definition it must be additionally set A<(1/U4) with A=0, A=(15/64)).
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Finally, the solution of the type IV corresponds to a case in which it is U =U,=0.
It is found
U,
- . (19)
[P(tankPz - 1) + tarlhzz]l/2

Where it is P = Ug/(ZUg- 3/2) , P= QUg[Ug- 1/2]/(v2- 1). For the constant value U,

we have ﬁ%ﬁz= (1% 1 - bA)/2 . The sign (+) corresponds to supersonic waves which
can be defined when we also consider (3/16)<A<(1/4). The sign (-) corresponds to
subsonic waves. (Now we have to consider A<{1/4) with Az0, A=(15/64)). Finally, a
particular case (type II) occurs for which A=(3/16) and the solution represents a
kink describing a transition from the state U,#0 to the state U,=0.

6.NUMERICAL RESULTS.

We present numerical simulations corresponding to the solutions of the types I and
III. We examine the evolution of a localized solution in time and we consider a
certain number of particles in each case. The numerical simulations are performed
directly by means of the set of discrete equations (12).

The kink-~like solution of the type III corresponds to a proton displacement from the
state -U, to the state +U; which are wells of the ¢ potential. This solution is
remarkably stable as it is shown in Fig.3a. On the contrary, the pulse solution of
the type I shown in Fig.3b presents an instability. After a short lapse of time, the
pulse splits into two pulses travelling in opposite directions accompanied with
rather large perturbations behind them. This makes difficult further investigations.

) oT\ O
@) \19?13\- (b) a1

Fig. 3 : Numerical simulations of the proton motion on the lattice, (a) stable
kink-1like solution (type III) and (b) unstable pulse solution (type I).
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7.CONCLUSIONS.

We have studied the influence of the dipole-dipole interaction on the proton motion.
This kind of interaction produces an influence on the electric field of the system
which affects to the proton motion and proton conductivity becomes much easier. The
description of ionic and orientational defects associated with the protonic conduc-
tivity remains the same as in ¢! case, previously studied by other scientists [6].
It is necessary to remark that in our case we obtain many possibilities for the
solution according to the values of the parameters, since the resulting equation
possesses stable, unstable and metastable steady states. Another important point of
the whole study is that we have to return to the problem of the continuum approxima-
tion and examine in detail all the possible cases. The model can be extended by the
introduction of an external electric field applied on protons and also the introduc-
tion of damping. We can additionally consider a rotational motion of the dipoles,
something which is closer to the real system, especially if we deal with nonlinear
atomic chain. We can also examine the influence of second nearest-neighbouring
interactions and more. At length, discreteness effects can be a source of very fas-
cinating phenomena occuring at the microscopic scale.
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RESONANT STATES IN THE PROPAGATION OF WAVES
IN A PERIODIC , NON-LINEAR MEDIUM

J. Coste, J. Peyraud
Laboratoire de Physique de la Mati¢re Condensée - URA 190
Université de Nice-Sophia Antipolis, Parc Valrose, 06034 Nice Cedex (France)

A - CLASSICAL WAVES

Let us first consider a transparent linear medium where the refractive index is periodically modulated:
2 .2 . .
n =k0[1 +ev(x)] (in reduced units)

where v(x +15) = v(x) (lg : modulation period). There exist unstable solutions of the wave equation
in the gaps surrounding Bragg resonances. These resonances are defined by ¢ =k, a =n =, ¢ being
the phase shift of the wave over L.
In the case considered in this first part, the modulation is harmonic (v(x) = 2 cos 2x), and the gap
associated with first Bragg resonance is defined by : kg € [k? , ki] , Where k:2t= lte

Let us now add a non linearity (due to Kerr effeot). Then : n2 = k(,2 + 2€ cos2x + | ]2
¢ being the wave amplitude. We first look for stationary (monochromatic) solutions of the wave
equation (92-n23) ¢= 0, that is of the form ¢ = (x) €™ (T = @, 1).

The problem is conveniently studied (3:4) with the help of the Poincaré map for variables
Xj= $(Gm, Yj = (d/dx) ¢ (j=) (the modulation period 1, is here equal to ).

It appears that the mapping

Xju)_ [ X5 Y
(an ) ) (g(Xj’ Yj))

is non integrable. The fondamental bifurcations of this dynamical system are the Arnold strong
resonances : ¢ =27n/n (n=1,2,3,4), where ¢ is the rotation number around the origin (which is
also the wave phase shift over one period). We note that two of these values (n = 1,2) coincide with

Bragg resonances.
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n =1 resonance (¢ =2 : 2nd Bragg order). We obtain the following bifurcation diagram :

2Elliptic Fixed
points A,A°

~
~

~

~
Origin _stable ™,

Id

\2Hyperbalic fixed
points H,H’

Fig.1 Bifurcation diagram for n=1 resonance

Neighborhood of k. : ko2 = k2 - 7. The origin is unstable inside the gap, and the phase portrait
has the following form :

Homoclinic
orbit associated
with Gap Soliton

An

1

D

Fig.2 Phase portrait inside the gap

The two homoclinic orbits are associated with the celebrated gap solitons(1,2,3,4), which are
immobile localized structures. The distance d of elliptic fixed points to the origin, which is a measure
of the soliton amplitude, goes to zero when 11 — 0. The non integrability of the mapping manifests
itself by the stochastic behavior of the orbits near the origin. As a consequence, one-peak solitonic
solutions are not allowed in large systems. Indeed the orbit points always escape from the origin after
a finite number of iterations. Therefore the solutions are multi-peaks, with random inter-peak
distances Ij, the average 1 = <l;> diverging when 11 — 0 like V. The critical exponent is found to be
v=14.

When 11— O the rotation number around A or A' goes to zero and the mapping becomes
integrable (or close to an integrable one). Then it can be shown that the soliton amplitude A obeys an
ODE of the form :
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2

A Arnta=o0 1)
2

dy

y being a large-scale spatial variable. Eq. (1) admits a solution of the NLS type.

Neighborhood of k. : koz =k2- 7 . The origin is now stable (we are outside the gap) and the phase
portrait has the following form :

Hétéroclinic Orbit
assoclated with
Kink solution

Fig.3 Phase portrait for ko2 =k 2 -m

It appears, in addition to elliptic points A, A'(which are now at finite distance from the origin), two
hyperbolic points H, H' whose distance d to origin goes to zero as 1 — 0. The finite amplitude orbit
(@) is strongly chaotic. On the contrary the small orbit (A) is "nearly integrable" and is associated
with a kink-like solution.

n =2 resonance (15t Bragg order). The phenomena are exactly the same, except that the sign of wave
function changes after each period. We therefore call "alternate" the solitons and kinks obtained in
this case.

n=4 resonance (¢ = 7/2). This resonance occurs exactly in the middle of the transparence band. The
bifurcation of the mapping around the origin (which is elliptic) generates a set of 4 fixed elliptic
points and 4 hyperbolic points, and the union of heteroclinic orbits is a set of two entangled ellipses.



Fig 4 Phase portrait for n=4 . The "square structure".
We have called this configuration a " square”.
n = 3 resonance (¢ =2 n/3) ,
Here the bifurcation of the origin does not generates a strong resonance, because-of the
symmetry of the model (the non linearity is cubic). It would if some physical effect could break this

symmetry, introducing a quadratic non linearity. In the present case this resonance can occur around
an another elliptic fixed point of the mapping. We show on Fig.(5) this bifurcation around one of the

A
Y4

Fig 5 Resonance n=3. Phase portrait around a fixed point of the previous period-4 cycle.

fixed points of period-4 cycle considered above .

(A,B,C,D: Period 4 fixed points)

The limit orbits form a curved triangle (we called "triangle" this new localized structure), and
one observes that the orbits are strongly chaotic outside this triangle.

Unstationnary regimes

Considering now the propagation of a narrow wave packet around frequency ®g, we have
shown(5) that there exist solitonic solutions near the bifurcation points (k(,2 = k+2 - 1) which (for
resonances n = 1, 2) take the form :

o(x,t) ~ Asinx elT+c.c.



191

where A obeys the "slow" wave equation :
(i +3,°)A-A+IAZA=0 @)
where y, 7' are an appropriate large scale variables.

Eq. (2) is isomorphic to NLS equation through gauge transformation A — A 1T, Rather
unexpectedly the gap solitons are of the NLS type (near the bifurcation point) . Their amplitude a is
small and they propagate at low velocity v. Quantities a, v and M are related through the relation :

aaZ+Bvi=ym (3)
o, B,y being numerical coefficients.
Concerning the square and triangle structures, a numerical study of the time-dependent problem have
been made(6) showing that they are unstable, leading to chaotic regimes.

B - RESONANT POLARONIC STATES ON A 1-D PERIODIC CHAIN(7)

We consider the interaction of a periodic chain of atoms with one unbounded electron. The
atorns are considered as classical scatterers ( we neglect their quantum fluctuations in the limit of very

large mass). The interaction potential of the electron with the nth atom at position xp is - V (x - Xp),
2

. . L. K 2
and the elastic energy of the atomic chain is : - 2 (Xps1-Xn) -
n

The interaction couples the xp's and the electronic wave function ¢ ( x,t), and this coupling may be
described by the Ehrenfest equations obeyed by the atoms variables. In the classical limit, and
neglecting the inertia of the atoms, one obtains :

2
Ko@g-u,9)=- <V' (x - xn)> @
where up = Xp+1 - Xp and <> means the quantum average with respect to ¢.
The functional dependence of the x,'s on ¢ makes the Schrodinger equation
2

k
ih 9,0=- Ea,‘2+2V(x-x,,) 'y )

non linear. Solving Egs.(4,5) amounts to study the propagation of the electronic wave on the nearly
periodic atomic chain. The role of non linear Kerr effect in the previous problem is played here by the
lattice deformation induced by the electron-lattice interaction.

In the simplest version of the model, V is taken 0 - like :
Vix)
v

i I
bt
Fig 6 Shape of the interaction potential
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with V—eo and 1-» 0 with V1— ¢ finite. The Poincaré map connecting the fields over one period is
for a stationary solution, (¢ = ¢(x) (/) Ety :

(Xn+1) 1 cosOn  sin (On-H) (Xn)
Yo+ €OS U 1. sin (Bptl) cos Oy Y,

*
0,,1=0,~A X4y Ypytecy

2

2
-2 X o ok =
where =5m * 9= un+u,tgu—2—k
3.
cos . d¢ 2k” sin p
Xa=0p» Vo=~ g5 o A=
cos”

This mapping is conservative in (X, Y, ) space, and it defines a non integrable dynamical
system, whose qualitative properties are remarkably similar to those of the previous classical one. In
particular it yields the same localized structures near the Amold resonances, and these structures look
like resonant polaronic states. However there is an additional constraint : the wave function must be
normalized.

We shall briefly consider resonances 0 =7/2 and {0 =0, &t}.

0 =1/2 resonance. The two first equations of the mapping reduce to :
Xn+1 = 0 1}({Xn
Yn+1 -10 Yn
showing that Xp 41 Yn41 = - X Y. Therefore the uy's are of the form (-1)R o ( o slow variable ).
Again the system becomes integrable near the bifurcation point (the mapping reducing to an
integrable set of 3 ODE). And again the limit orbits produce the set of two entangled ellipses, as in
the classical problem. It must be noted that these solutions cannot be normalized in an infinite system.

Indeed we find that

2

xn~[1 - tanh (\m)]ll2

9 -1/2
, Y, ~tanh (Vn){l + tanh (Vn)]

where v =k 15 - (/2). (5 : lattice period). The graphs of Xn and Yn are sketched on Fig.(7).
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Xn

-

Fig 7 Graphs of Xn and Yn .

It is interesting to note that this resonant state corresponds to those found in acetylenic
polymers. The Fermi wave number for these half filled band systems corresponds to O = kgl =
7/2 and one finds a ground states resulting from Peierls condensation ( see Ref.(8) ). This state is
doubly degenerate (states A,B) and their exists a "solitonic structure" connecting A and B along the
chain. Our "square structure" has clearly the same form. And indeed we are treating here a one
electron version of the polymer problem, the electron wave number being equal to kg.

Resonances 9§ =0

0 == yields an "alternate soliton”
0=0 yields an "non alternate soliton"
Let us consider the case 6 =T.
Putting (€, Mp) = 1D (Xp, Yp), we obtain for 0 ==

§n+1 - 1 1 0 én
Npey] cospi2sinp 1 n,

and the eigen values Sa,B of the linearized map around 6 =&, obey equation :

2 cos 0
S

+2 s+1=0

cos |l
This permits to define a gap, or forbidden band by kgl € [x —p, ®+ U
The mapping becomes integrable near the bifurcation point giving a solitonic solution, and we
are also able to treat the unstationary problem. We then obtain propagative solitons obeying equation

2sin

im . A2
(3;“—”—%+8x2)n-2tgu[8- |n|]n=0 ©6)

when 8 =kly- (m+p).
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Eq. (6) has solitonic solutions of the form :

. W
M ~asech[a (x - wi)] e g )

where wo = fint/1y and :
2

a’+ () =28 ™
3

, : e n mw?
Finally we normalize ¢, which implies : a= - tg u( 2)

s
(M atomic mass, cg phonon velocity at k = 0).

Then the energy of the soliton can be written, with the help of relation (7) as:
2
2

E = Eo+%m* w’ , with m =- -eT m, (m, electron mass).
(+]
It is worth remarking that the theory can be extended to the case of potential peaks with finite
width and amplitude. Then m* may be of the same order of magnitude as me.
In the case of the 8 = 0 resonance, all goes along similar lines. The only differences are that the

soliton is of the non alternate type, and m* = Me.
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GAP SOLITONS IN 1D ASYMMETRIC PHYSICAL SYSTEMS
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Abstract.We present a general approach for studying the nonlinear transmittance and gap:
solitons characteristics of asymmetric and one dimensional (1 D) systems in the low amplitude or
Nonlinear Schrodinger limit. Included in this approach are some novel results on naturally
asymmetric systems and systems where the symmetry is broken by an external constant force.

I. Introduction

Transmissivity near the gaps of a nonlinear system! of finite length exhibits bistability
and can approach unity once the amplitude of the incoming sinusoidal wave is greater than a
certain threshold which is frequency dependent and decreases with the length of the system. In
the transmitting state, one has a nonlinear standing wave called2-3 a "gap soliton “. Recent
literature1-3 has focused on symmetric systems, i.c. where the nonlinear potentiel (substrate or
Iateraction potentiel ) is symmetric: it only contains even powers of the characteristic field or of
its gradient.

An interesting way to complete and extend our knowledge of the nonlinear response of
finite systems with gaps is to analyse systems which are naturally asymmetric or systems where
the symmetry is broken by the presence of an external force?. We present here a general
approach for studying the nonlinear transmissivity and gap soliton characteristics of asymmetric
1D systems in the N.L.S. limit. We illustrate this methodology by application to the perturbed
Sine-Gordon system.
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II . General problem

In the one-dimensional arrangement illustrated in fig. 1, an incoming wave plane wave!l
of frequency ®, amplitude ¢9 and wave number kg =@/ cg in a linear medium propagates

along the x direction and strikes at x = 0 a nonlinear medium of length L. The complex quantity
R is the amplitude of the reflected wave measured with respect to ¢ and similarly T is the

amplitude of the transmitted wave at x = L in the linear medium (3) expressed as a fraction of that
of the incident wave.

do exp (i (kgx-a) 1))
NNNN-

Too exp (i Gkpx-wt)

incident NN\~
wave
transmitted
Réo exp (i kpx- 1)) wave
N\ N\ N\ figure 1: the incoming field
reflected o(x,t) = ¢g exp( i(ke x - ot ))
wave : ! strikes a nonlinear film (2)
y of length L. The transmitted
linear ! nonlinear I Jinear wave emergesin the linear
medium ! medium I medium medium (3).
@ x=0 @ x=L (3

Inside the nonlinear medium we assume that the field @ (t) obeys a generalized Klein-Gordon?
(K G) lattice model equation :

2dn  cy2 dV(®n)
=0 (Ppp] + D1 -2D@p) - @2 ———
2 22 \Pntl n-1 n o ddn

2.1
Heren is the site number, V(®@y) is a nonlinear substrate potential ,the constants ¢, and 0, are

the characteristic velocity and frequency of the system and a is the lattice parameter. In the low
amplitude limit, we look for nonlinear collective oscillations in the bottom of the potential wells.
For this purpose, assuming @y, = £,y + @ in eq. (2.1), where € << 1 and @, is the ground
state or potential minimum around which the oscillations will occur, and keeping terms to order
€2, one gets:

32
—at%ﬂ =K @n+1+9n-1 - 20n) - (@0)? (9n + edn? +2B0n) 2.2)
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where K = c02 / a2 and the coefficients 'g, & and B are determined by the shape of the
potential. It is interesting to note here that ®g = 0 and the second order term vanishes ( o = 0)

when the potential wells are symmetric, as it is the case for the classical Sine-Gordon system
where dV(®p,)/d®,, = sin ®,,. We have Py #0 when the potential wells are asymmetric, which

is the case in SG system perturbed* by an external force &.

Let us now consider oscillating solutions of the form:
on(t) =F1 cien +c.c+¢€[Fg+Fp e2i9n +c.c} (2.3)

where F1, Fp and F3 are, respectively, the slowly varying amplitudes of the first harmonic, the

dc and and second harmonic terms. These last two terms are introduced to take into account of
the asymmetry of the potential, however we neglect higher harmonics. The phase defined as 6,

= kna - wt varies rapidly. Inserting (2.3) in (2.2) , equating dc, first and second harmonic terms
and keeping terms to order 2 , we can relate Fg and Fa to F1, and get :

+3p] IF112 2.4)

s . nka s
@2=(w'o)2 +4K sin? 5= + e2(w’o)2 [-4a2+ 6K 4ka
2

Expanding now this general nonlinear dispersion relation eq. (2.4) in Taylor's serie about the
carrier frequency @, and wave vector kp yields>:

w-ap = ( )(kkp)+2(ak2)(kkp)+(a,F 7 ) IF112 (2.5)

Setting Q = w-wp and K = k-kp ,with Q << wp and K<< kp, eq. (2.5) represents the
nonlinear dispersion relation Q = f(K, |F1|2) of the wave envelope. In (2.5), the derivatives
represent respectively the group velocity Vg, the group velocity dispersion P and the

nonlinearity:
0w %0 2w
E)=Va- = (9=, Q=-Gies) 26)

Substituting now the derivative operators in eq. (2.5) by the coefficients defined in eq. (2.6)
yields the Nonlinear Schrodinger Equation (N.L.S.):

i[Fy+ VgFi;1+PF +QF12F =0 .7)

We now consider a particular case, in order to illustrate how one can determine the transmittance
and the envelope behaviour of a given system.
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III. An example: the perturbed Sine-Gordon system.

We consider the specific case4 of a perturbed SG system. In this case, the Sine-Gordon

potential is:

2

F
V (@) =1-cos &y +—5 Py (3.1)
o

Its minimum occurs at & = -sin"1 (¥/wy2), while the coefficients of eq. (2.2) become?
(@o)2 = (oozcos Dy, a=- %tan @, and P=- —é— . The force & lowers the linear dispersion
curve with respect to the unperturbed case ( F=0 ) , as shown on fig.2. This is enforced by the
nonlinearity Q in N.L.S. eq. (2.7), which is positive in this case:

1
2c 5 tanZ(P)
Q=_°)02;$;(®0).[tan2(<bo)— - s +11, G2
wp2cos(Pp) 2

fig.2 Linear and nonlinear
dispersion curves for a perturbed
SG system. The external force
lowers the linear curve (dashed
line) with respect to the
unperturbed case  ( dotted line),
while the nonlinearity with an
arbitrary amplitude enforces this
lowering (solid line).

The interesting situations occur then near the gap edges of the linear dispersion curves,
because the nonlinearity will change the transmission behaviour. We have:

- either kp =0, wp = ay’, Vg = 0 and P = + cg2/20) near the lower gap

- orkp=7/a, wp=a, Vg=0and P=-co2/2w, near the upper gap.
In both cases,the angular frequency of the incoming wave is repered by the small detuning Q =
® - @p . We seek now envelope functions in the nonlinear medium of the form®:
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F1 (x,t) = ¢g VI(x) exp(i0(x)) exp(-iQt) (3.3)

where the squared envelope function I(x) and the phase 6(x) are real. Putting the form (2.9) in
N.L.S. eq. (2.7) gives after some calculationsS:

&2 =20 (3.4)
with:
9>(1)=-(2§¢0213+4%12-4IB+4A2). (3.5

The constants of integration A and B are determined by the boundary conditions at the interfaces
(see fig.1), namely the field and its first spatial derivative are continuous at x=0 and x=L.
Moreover, these boundary conditions show that I(x=L) = Ir_ is always a root of P (I), while

limiting ourselves to low amplitude ¢ and small detuning Q, the two other roots of P(I) are real
and positive. Finally, P (I) becomes:
9’(1)=-2%¢02 I-IL) (-1 a-1) (3.6)

where I, and L are given by:

211 kg2 P
I+=-(17L +__2_2_)+ —\/(I_ZL + Q )2+ L ¢ (3.7.a)
Q Q 21 ke2 P
I‘="(17L+—_i)' «\/(%. + 2)2+ L <¢ (3.7.b)

Integrating eq. (2.10) according to the ordering between I(x), I, I and L. and the sign of P, Q
and Q, leads to a Jacobi Elliptic? function expression with the parameter Ir.. Using once more§

the boundary conditions gives the following condition:

(e 12 + 4Kg2 (I +1x=0) 2 - 16 ke? 1(x=0) =0 , G5

which permits to keep by numerical calculations the suitable values of I . Once I, is determined,
one can get I(x). Then, from egs. (2.3), (3.3) and continuity at x = L, we get the transmissivity
coefficient IT2 =1 .
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IV. Results for the perturbed Sine-Gordon system.

Using the approach presented in the previous sections, we calculate numerically the
transmissivity and the square of the envelope function. We consider successively the lower gap
and the upper gap of the dispersion curve (see fig.2), where the results are quite different.

A. Lower gap: we consider a system where L = 60 a, the velocities (defined in section II ) are
co=cg =4.5 and: Q =0~ oy =~ 0.01.

Our results, represented on fig.3.a , agree with the previous works1:6 obtained for SG
systems, i.c. the system presents bistabilities and hysteresis cycles. The external force lowers the
threshold values, as seen on fig.3.a. This can be easily understood because Q, given by eq.
(3.2) isa growing function of ®p and F.

o

0.4

0.2

1 T T | AR L
. I h =1 s =
[Tz € I} : e t
i ] ' ]
] s 1
0.8 : . [
! ] 1
h ] it :
I 1 .
0.6 i - N S
!: : ° 20 0 x %
!. - w T T
| E A ]

l[lllfll"l_’v'Tl_"_’—rTl'IIlfl

Fig.3.a Transmissivity ITI2 versus the amplitude ¢g of the
incoming wave, when the frequency o lies just below the
lower gap edge (©2=~0.01) for the unperturbed S-G system ‘
(solid line) and for the perturbed S-G system with a force F of L ;
=().39 (dashed line) or F=0.72 (dotted line).

Fig.3.b,c and d: For F=0.72, the shape of I(x) at points B, C
and D of fig.3.a is represented versus the coordinate x.

When ¢g is weak, i.e. in the linear limit, the wave envelope is evanescent (fig.3.b).
When ¢ increases, the system reaches a certain threshold, which depends on the value of & .
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Then the system switches to a transmitting state and the envelope is that of a nonlinear standing
wave ( called a gap soliton). In this case, one has P.Q > 0. Then if one further increases ¢g, the
transmissivity reaches successively several maxima, which correspond to different resonant
modes (standing waves of fig.3.c and d) described by Jacobi Elliptic functions. For one resonant
mode (fig.3.c), the maximum is at L/2 = 30.

B. Upper gap: the nonlinear system length is still L=60 a, but now cg=2.,k¢ = 0.015
and Q= - ;' =- 0.003. Our results, represented on fig.4.a, still show that the threshold
decreases with the external force. This can be explained by the fact that Q increases with F. The
squared envelope function, represented on fig.4.b, is characteristic of a standing wave
behaviour: it now corresponds to P.Q < 0.By contrast to the previous case, for one resonant
mode (standing wave on fig.4.c) at x =L/2 =30 one has now a minimum, When ¢g is further
increased, the envelope finally becomes evanescent (fig.4.d); this can be explained by
considering the dispersion curve (see fig. 2) and remarking that the nonlinearity tends to lower
the curves. Then, ® lies inside the gap.

,.—
=]
o -
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Fig.4.a Transmissivity ITI2 versus the amplitude ¢g of the

incoming wave when the frequency o lies just below the upper 0 20 w©  xow

gap edge (Q = —0.003) for the unperturbed S-G system (solid
line) and for the perturbed S-G system with a force F =0.72
(dotted line).

Fig.4.b,c and d: For F= 0.72, the shape of 1(x) at points B,C
and D of fig.4.a is represented versus x.
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The method presented here allows to investigate asymmetric systems. If the asymmetry
results from a symmetry breaking, as for the perturbed S-G system, the external force allows to
control the bistability or nonlinear switching. Note that our approach can also be used for a
natural asymmetric system? like "¢4 ".
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EVIDENCE OF ENERGY DIFFUSION
IN PURE ANHARMONIC DISORDERED CHAINS
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Abstract: We present results of large scale simulations on vibrations of an-
harmonic disordered chain. We find that anharmonic effects tend to counter
the localisation process and lead to diffusion of the energy on the lattice. For
the anharmonic ordered case the energy is concentrated in large peaks as the
global energy spread linearly in time.

Keywords: Vibrations, Non-Linear Effects, Localisation, Diffusion.

Introduction

Using a massively parallel computer (Connection Machine), we have studied a chain
of atoms of mass m;, interacting by harmonic and “quartic” anharmonic interactions
described by the coefficients k; and k4 in the hamiltonian which is written as:

=Y tm+ 2 Y wevpr ¥ Y wevy @

i,7,(n.n.) i,7,(n.n.)

The U;(t) are the scalar amplitudes of vibration at time ¢t and V;(t) = U;(t); the last
two sums run over all pairs of nearest-neighbors. Disordered systems were simulated
by having the masses m; randomly distributed. In a perfect chain, m; = m and the
hamiltonian (1) is the one studied in early time by Fermi, Ulam and Pasta [1]. The
nature of the stable non-linear excitations of frequencies higher than the cut-off phonon
frequency is an interesting problem which was revisited recently by Sievers and Takeno
[2]. They found, self-localized anharmonic modes of odd parity with frequency above
the Debye cut-off frequency and dependent on the k2 and k4 coefficients. Recently, Page
[3] has showed that the pure anharmonic hamiltonian i.e. without harmonic interaction
(k2 = 0), can be solved and yields two anharmonic modes of odd and even parity with
frequencies above the phonon cut-off frequency.

The present study deals with this simplified pure anharmonic hamiltonian (k; = 0)
in ordered and disordered chains. The main results are obtained by numerical simulation
of large chains of 16000 atoms. The equation of motion are integrated numerically using
either a simple leap-frog algorithm as described in reference [4] or a more sophisticated
fourth order symplectic method [5]. Results were found to be independent on the
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integration method. On a Connection Machine of 16384 processors with single precision
hardware Weitek chips and a SUN front-end computer we reached performances of
21 - 10% updates/sec with the leap-frog algorithm. The symplectic solver was about 3
times slower.

Periodic boundary conditions are used and the excitation consist in an initial dis-
placement of unit length of some chosen site (labeled 0). The time steps is 1/50 of
the shortest period of vibration and averages were taken over an ensemble of 10 to 200
different samples. Whenever disordered systems were considered, the masses were dis-
tributed uniformly around the average mass mg = 250 with a relative root-mean square

deviation : a/2)
2o 2
;= (___._< > mo) @
0

with o = 11.5%.

The characteristic results are represented in the following figures, where the exci-
tations has been applied at z = 0. We present the instantaneous energy E(z) as a
function of the space variable z for different times (in unit of the shortest period of
vibration).

1 - Perfect chain

The function Ey(z) is shown at a time (¢ = 50, fig. la) where the initial peak of
energy has already split into several peaks. At time ¢t = 1000 (fig. 1b), a broad packet
of the peak fragments is observed. Note that well defined peaks are moving in front of
the packet. It will be shown that the r.m.s. of this energy distribution varies linearly
in time (cf. figure 4).

2 - Disordered chain

The same plots E¢(z) for now disordered chains reveals a progressive spreading out
of the energy in space. Here the energy distribution at ¢t = 1000 is decreasing in space,
but fluctuates largely for one given sample.

3 - Disordered chain : Ensemble average.

Averages of energy profiles from 200 samples are plotted at different times (fig.
3a). As time increases the energy spreads on the lattice. In fig. 3b we plotted Ey(z) -
vVt vs. z/y/t As time increase the distribution function becomes increasingly well
approximated by a gaussian function. For t=10000 data we found that we could express

Ey(z) (solid line in fig. 3b) as :

exp(—2.18 - 10"2(——m—)2) (3)

V1)

4.72-102

V()

Et(a:) =
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Figure 1. Energy distribution function Ey(z) in the ordered case for a) t = 50 and
b) ¢t = 1000. The horizontal axis is in lattice units, the vertical scale is arbitrary units.

The excited sites is site 0. The energy also spread in the negative direction (not shown).
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Figure 2. Energy distribution function E(z) in the disordered case for a) ¢t = 50
and b) ¢ = 1000. The energy present large fluctuations with a general tendency to
decrease. The characteristic length of decrease grows with time as does the number of

peaks.
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Figure 3. Average energy distribution function < Ey(z) > (a) in the disordered

case for ¢ = 500(¢), 1000(+), 2000(=), 5000(x ) and 10000(A). Over 200 samples were

averaged. In (b) we have plotted < Ey(z) > v vs. z/+/ and eq. (3) (solid line). As
time increase the curves converge toward a gaussian.

4 - Evolution of the energy distribution

The second moment of the energy distribution < z? > is plotted as a function of
time for three different situations : - the losanges for the perfect chain exhibiting a t2
variation at large times, - the crosses for an ensemble of 10 disordered chain show a law
proportional to time for about two decades, - the square for a pure harmonic disordered
chain (k4 = 0) where the localization phenomenon is revealed by the saturation of
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Figure 4. Second moment of the energy distribution function < z? > for the
harmonic disordered case (a), the anharmonic disordered case (+) and the anharmonic
ordered case (¢). The first curve shows how the energy becomes localized due to the
disorder in harmonic systems. With anharmonicity the second moment increases linearly
with time for (¢ > 1000) as in a diffusion process. In the anharmonic ordered case the
moment increases as t2.

< 22 > at long time. The estimated localization length is obtained from this asymptotic
value: z¢ = 100.

5- Analysis

A preliminary analysis of the observed phenomenon can be formulated in the fol-
lowing terms:

- the energy peaks of the perfect and pure anharmonic chain are basically instable.
One observes a spontaneous desintegration a big peaks in fragments of smaller energy.
At longer times the packet of fragments moves uniformly in time. This uniform motion
reveals an underlying conservation law during the fragmentation of the type “conserva-
tion of momentum”. This relation comes from the translational invariance property of
the perfect chain.

- The apparent “normal diffusion” would come from the fragmentation of the peak
excitation on the mass impurity. Let us call R;, T; and L; the fraction of the inci-
dent energy which is reflected, transmitted of localized on the mass m;. The energy
conservation law gives : R; + T; + L; = 1.

The problem of random fragmentation can be changed into the more conventional
problem of random walk of a fictive particle which is reflected, transmitted or immo-
bilized with probability R;,T; and L;. It is not difficult to show [6] that the particle
obeys a diffusive law characterized by a diffusion constant D o (R;/T;)~!. Hence, this
diffusive motion leads to a well known law < 2% >~ 2Dt. Since this law is well observed
in the simulations, the model of random fragmentation on the impurities is validated.
This conceptual frame, in addition to the expected characteristic lengths present in
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the problem like the interatomic distance and the soliton or peak width, provides us a
new length [ : the average distance between two random fragmentations. The previ-
ous regime of normal diffusion is hence obtained when | >> A ~ a. (A is the soliton
width). Other interesting regimes could be also considered, particularly when the har-
monicity is restored, where an additional characteristic length : the localization length
must be taken into account. This more complex regime exhibits anomalous diffusion [4].
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1. INTRODUCTION

We consider a generalized Boussinesq equation which is a model
for the one-dimensional dynamics of phases in martensitic alloys. The
natural difference approximation that coincides with the discrete form of
the model is employed and then Newton's quasilinearization of the nonlinear
terms 1is performed. In order to adequately represent the localized
solitary-wawe solutions up to 20000 grid points are used in calculations.

Two distinct classes of solutions are found. To the first class
belong oscillatory pulses whose envelopes are localized waves. The second
class consists of smoother localized solutions that are either kinks or
bell-shaped "bumps" depending on the amplitude of the initial condition.
The amplitude of a bump decrease with time while its support increases. An
appropriate self-similar scaling is found analytically and confirmed by the
direct numerical simulations to high accuracy.

2. POSING THE PROBLEM

Following [1],[2],[3],[4] we consider the one-dimensional model
of an atomic chain in which the longitudinal displacements couple to the
shear strain. Upon introducing relative displacements the Euler-Lagrange

equations for variation of the governing functional adopt the form
2

d
(2.1) __;Sn =c%(Sn'1-2Sn+Sn_1) - (83-1—2S%+S%+1)
dt
+(52141_2S%+S§z-1) - B(‘Sn+2—4sn+1+6Sn_4‘sn-1+‘sn—2) ’
whose continuum limit is

(2.2)  Spp = cFSez ~ (S3)zg + (8°)gz - ASpzer -

In equation (2.1) the spatial variable is defined as &=X/a (where
a 1s the distance between the atoms). X,=na stands for the distance and
a=3-0.5 c% . The differential form hints at the name - "a generalized
Boussinesq equation" in the sense that (2.2) has more complicated
nonlinearity than the original Boussinesq equation [5]. The continuum limit
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provides also the clue how the boundary conditions are to be posed. The
natural boundary condition for the Lagrangian functional in differential
form is Sy; =0. Since the index "I" refers to the first atom of the chain
and "N" - to the last one, then for the discrete version of the system the
natural boundary conditions can be represented as follows

(203) 50—251+52=0 ) SN-1—ZSN+SN+1=O *

where in order to properly discretize the natural conditions we introduce
into consideration two "artificial" members of the chain with indices "0"
and "N+1", respectively. We also consider the physically most typical
situation when the boundary points are held fixed, namely

(2.4) S,=0 ,  Spy=0 .

3. ALGORITHM

In order to successfully treat the problem of localized solutions
{(henceforth called "coherent structures") the first requirement for the
algorithm is to be fast enough allowing computations with large number of
"grid points" N in order to provide room for a structure to move without
interacting with other structures or with the boundaries. The second major
requirement is for strong temporal stability in the sense that the
different kinds of computational errors do not amplify timewise even for
large values of time increments. The last requirement is crucial because
some of the properties of the individualized 1localized solution can be
recognized only after very long temporal evolution.

It is convenient to introduce the auxiliary function

(3.1) Qi = C;-Si -~ S:% + Sz - ﬁ(Si_1—23i+Si+1) N i=1,...N .

and to recast (2.4) in the form
2

d
(3.2) —S; = (Q;_,-2Q;+Q;,,) 1=2,...,N-1 .
dt
In terms of function Q;, the boundary conditions adopt the simple form

(3'3) 51=SN=O:Q1=QN=00

Initial conditions are imposed both for function S and its time
derivative, say functions s; and o;. We use the superscript n to denote the
current time step on a staggered time mesh tn=(n—0.5)r where 7 is the time
increment. Then the initial conditions are approximated to second order as
follows

T T
(3.1 S = s; - 7% St =5, + 77 -
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The main objective in devising the algorithm is to have a stable
scheme that would allow us to march with large time increments 1. For this
reason we chose a fully implicit scheme. At the time step (n+l) we use a
consistent Newton's quasilinearization of the terms on the right-hand side
of (3.1) according to the formulae:

(3.5a) S|t = 38TASTHY - 2873 + 0(7)

(3.5b) S3|™ 1 = 5STASTY - 4875 + 0(72)

(3.5c)  S3|™t - 2SESF - SR 4 0(7)

The strongly implicit. scheme requires also that the time
derivative of (3.2) be approximated at time step (n+l). At the first step
(number 2) following the two initial steps, one can have only a first-order
approximation of the second derivatives over three steps:

d? 2 1
(3.6a) ;;;Si] = —(53-254+53) + 0(7) .
T

At all of the next steps (n>2) we employ the following four-step scheme
with second-order approximation

d? 1
(3.6b) —S; = (287 1-58T+48T1-872) + 0(7%) .

dt? 7?2

Introducing the above formulas into (3.1)-(3.2) we arrive at a

coupled system of difference equations for the two set functions S;, @;,
namely

7+ 1

(3.7a) BSI:1 - (26+c2-3S024+55n8)8n0 4+ ggnrl 4 @Bt = 28734575
7T+ 1 72+ 1 7T+ 1 2 7+ 1 1 7 77— 1 7~ 2
(3.7b) 01 7 20T+ QU - ST = - —(557-48TTT4STT0)
T T
Here the set functions of steps m, n-1 and n-2.are thought of as being
known. Egs (3.7) are valid for all interior points 7 = 2, ... , N-1 and are

coupled through the boundary conditions (3.3).
The most important feature of the system (3.7) is that upon
introducing the composite set function

1 +1

(3.8) Wy, =QF , W,; =S¥, 1 =1,...,F,

Hi

and after fairly obvious manipulations the said system can be recast as a
five-diagonal system for the new set function W, where 1<k<2N. The band
structure allows us to use highly efficient specialized solvers, e.g., the
one developed in [6].

IV. RESULTS

To start with we set ¢, =1, 8 = 1. It is easily seen that the
particular values of these parameters are not so important and by changing
the value of the time increment 7 we can select most of the principal cases
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by means of simply rescaling the dependent and independent variables. Due
to the strong implicity, the scheme turns out to be stable for a wide range
of time increments, 10" %<7< 10° , and for a wide range of amplitudes of
initial conditions. As it should have been expected the computations with
larger 7's led us to the smoother solutions spreading wider in the region
under consideration.

The smooth solutions persisted in our calculations when the time
increment T was larger than 5. It goes without saying that we did verify
whether the same shape of coherent structure is obtained if the calculation
are conducted with different ™5 (say 7=10 and 7=100). We discovered that
what mattered was the interplay between the time increment and the
amplitude of the initial condition. When the 1latter is "moderate" in
comparison with T then the homoclinics of the shape of Airy functions
appeares as shown in Fig.l. When the initial amplitude is relatively small
the pentic nonlinearity is swithched off even on the earliest stages and
then the symmetric homoclinics shown in Fig.2 appeared. Conversely when the
amplitude was large enough, then the balance between the two nonlinear
terms yielded the kink-shaped structure (heteroclinics) shown in Fig.3.

An interesting feature of the homoclinics is that their shape is
not preserved timewise while the heteroclinics (kinks) are stationary
patterns. The former decrease in amplitude with time while their support
increases and after a sufficiently long time the solution eventually gets
on a self-similar track discussed in the next section.

A completely different Universe appeared when the time increments
were small enough (say 7<I for @=1) and allowed development of more
complicated "wiggled" shapes. It is more convenient to consider the case
7=0.1, @B=0.01, since the spatial span of the structures is smaller. In the
sequence of Figures 4 one sees the development of a "pulse" that has smooth
shape in the right-hand side of the interval but in the course of its time
evolution spans larger portions of the left-hand side of the interval with
its wavy "tail".

The complete classification of the different creatures inhabiting
the generilized Boussinesq equation goes far beyond the scope of the
present short note. A more systematic account is due elsewhere.

V. THE SELF SIMILAR STAGE

The results of the previous section suggest that for large times
some of the solutions tend to adopt a self-similar shape in the sense that
their amplitude decreases with time while the length-scale of the support
increases. Being reminded that at large times for the decaying solutions
one has $°<S3 we found a self-similar scaling of the following type

(5.1) S =t%(y), 7= t's(x—crt) where a = § =

8 )

Respectively, the equation for the scaled function s reads
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22 ! rr 33yr1¢ rrer
(5.2) Ecr(4s +ps'') = - (83) - Bs .

Here the primes stand for differentiation with respect to the similarity
variable ». It is interesting to note that such self-similar solutions were
found both for Burgers' equation [7] and Korteweg-de Vries' equation [8].

It goes beyond the frame of the present work to attempt a direct
solution to (5.4). Rather we shall check whether the time dependent
solution of the previous section conforms with the asymptotic law (5.1).
Let us define the length of support L, as the distance from the point where
the maximum of the structure is situated to the point where the amplitude
is 1/100 of the maximum. The definition is appropriate for all of the
structures which decay monotonically in the right portion of the region
under consideration. In Table 1 we present for the solution from Fig.l the
amplitude and support as a function of dimensionless time after a certain
moment of time that we call t=0. Next to the column of numerical results we
also present in Table 1 the approximation for A and L, of the type

(5.3) A = a(t+ay)"/3 , Ly = b(t+a,)'/3

where the constants a,b and q, are defined so as to provide a best in the
least-square sense fit to observations from numerical simulations. It is
clearly seen from Table 1 that the asymptotic self-similar powers are in
excellent agreement with the data for both the amplitude A and support L
the difference being less than 1% save the moment t=0 which in fact is "too
early a moment" to be treated as an asymptotic stage.

TABLE 1. aq, = 2.76.10%; a = 1.011; b = 63.3
time amplitude approxim. % support approxim. %

0 0.033063 0.033445 1.14 1866 19139 2.503
20000 0.027840 0.027894 0.19 2281 22948 0.601
40000 0.024881 0.024818 0.255 2587 25792 0.301
60000 0.022767 0.022765 0.0106 2804 28119 0.279
80000 0.021265 0.021257 0.0378 3002 30113 0.308
100000 0.020095 0.020083 0.0597 3183 31873 0.315
120000 0.019139 0.019132 0.0377 3343 33458  0.083
140000 0.018337 0.018338 0.0082 3492 34905 0.042
160000 0.017658 0.017662 0.0244 3632 36241 0.217
180000 0.017066 0.017076 0.0583 3763 37486 0.384
200000 0.016541 0.016560 0.117 3884 38653  0.484

In Fig.5 are shown the rescaled results for the shape of coherent
structure. One sees that the similarity is beyond any doubt. The same holds
for the second kind of homoclinic solutions (Fig.6) which means that the
expanding self- similar solutions are inherent in Boussinesq dynamics.
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Abstract: In near-integrable soliton-bearing systems spatially coherent states can play an important
role. In this contribution we briefly review some of the main phenomena for physically relevant situa-
tions. We start with the well-known soliton formation in integrable systems which can be interpreted
as the first appearence of self-organization in physics. It is shown here that also in non-integrable
Hamiltonian systems solitary waves can self-organize. For dissipative systems, the self organiza-
tion hypothesis is presented and tested for 2d drift-waves. A socalled self-organization instability
is found which shows the growth of a spatially coherent (solitary) structure even in the presence of
turbulence. The other finding in this respect, the absence of (Anderson) localization in nonlinear
disordered systems, is also briefly mentioned. The soliton, as a collective excitation, can overcome
individual chaotic motion. A recent result for the proton motion in two Morse-potentials under the
influence of oscillations of the heavy ions, is discussed showing the importance of solitons to create
ordered structures and collective transport. Nevertheless, solitary waves can also be the constituents
of deterministic (temporal) chaos as shown in the final part of this contribution.

1. Self-Organization of spatially coherent structures

The constructive proof [1] of integrability of the 1d KdV-equation can be considered as a milestone
in the development of nonlinear physics. As a by-product of the proof, self-organization in the form of
stable solitons appears. This is very fascinating and can be considered as an important contribution
to the new discipline “synergetics”. From the physical point of view the question arises whether this
self-organization phenomenon is an artefact of the integrable systems. Integrability can be broken
by several means, e.g. higher space dimensions, dissipation, driving, etc. In the following we shall
present four examples for self-organization of solitary waves in non-integrable systems. The results
follow from numerical simulations, but can be understood by analytical theory.

Let us start with self-organization in KdV-systems. We take as an example the non-integrable 2d
KdV equation

Opu+ ud,u + 0,Viu =0 (1)
in the Zakharov-Kuznetsov form. Here, V? = 8% + 87 . It reduces for only one relevant space
coordinate z to the celebrated KdV-equation [1]. As has been shown [2], 1d soliton solutions u, =
122 sech?[n(z — 2o — 49°t)] of (1) are transversely unstable. The growth rate 7% can be calculated
by variational principles to yield

(‘Plaszazl‘P) = inf (‘Plaszaszaszazl‘P)

WlHl) — ¢ (vlo.Hale) (2)

7 =sup
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Here Hy = —0? + 47 — u, + k. The growth rate depends on the transverse wavenumber k; a
cut-off appears at k = k, = v/57, and the growth rate has its maximum for k% ~ 1.79% In Fig. 1a
this dependence is shown by constructing numerically upper and lower bounds from (1). The exact
growth rate curve lies within the shaded area. Also the small-k and small-(k.-k) expansions are
shown, respectively. In a 2d numerical simulation [3] we identified this instability and followed its
time evolution. A typical result is shown in Fig. 1b. We can interpret this finding in the following

]
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Fig. 1 (a) Transverse instability growth rate vi vs. wavenumber k for a 1d KdV soliton.
(b) Appearence of stable 2d KdV-solitons in a numerical simulation of (1). We started with a one-
dimensional soliton in the z-direction.

way. In a narrow channel of width d, small k-values cannot occur and the (along the channel) 1d
KdV soliton is (transversely) stable. At d = 2r/k. a bifurcation occurs and the 2d KdV solitary
wave is the new self-organized state. It is shown in Fig. 1b as one of the humps.

For the 2d soliton solution of (1) a Liapunov functional can be presented [4] in the form L =
Ly{u} — Ly{t@ia}, where

L{u}:= /alzr[(Vu)2 - %ua +49%u? (3)

and @iyeS belongs to the invariant set S defined with respect to space translations £, iy = Uy (7 ——f_).
The functional (3) proves the stability of the 2d stationary localized solitary wave solution of (1).
The procedure is standard: for the first variation 6L = 0 and for the second variation 62L > 0 can be
shown. [When instead of two space dimensions the three-dimensional case is considered, the stability
of a 3d localized solitary wave solution can be proven in a similar manner!]

However, one should be cautious in generalizing these results. If, for example, the case of the
cubic nonlinear Schrodinger (NLS) equation

idq +2lg’q+ V¢ =0 (4)

is investigated, again the one-dimensional case shows self-organization into 1d solitons ¢, =
n sech(nz) exp(in®t). This fact follows from the inverse scattering solutions by Zakharov and Sha-
bat {5]. The soliton solutions are two-dimensionally unstable, with a transverse instability growth
rate [6]

—(elH-lp) _. —(plH-H.H.|p) 5)

%= P T (I le)

In the second expression, the variation of ¢ is restricted to the subspace {p|H-|¢) < 0. Here, the
operators H, and H. are defined as Hy = —32 — k? — 2|q,|>+ 9% and H. = H, —4|q,|?, respectively.
The cut-off wavenumber is k. = \/517. When again considering d = 2x /k as the bifurcation parameter,
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at d = 2n/k. a bifurcation occurs but instead of a stationary (unstable) 2d Schrédinger soliton a
new time-depending (collapsing) solution appears. When the initial state is close to a (unstable)
stationary 2d Schrédinger solitary wave, the following theorem can be proven [7):

Let us assume in 2d that H{g} < 0 holds, where H is the energy functional H = [ d?r(|Vq|?—}|q|*).
Then, up to translation in space and phase shifts, we can find for every € a é, such that

| g(z,t =0) = G(2) [lw12< b = | g(z,t) — u(t)Gp(t)a] ||2 < € holds,
with p(t) = IS4, u(t=0)=1and 0< t < t..

Here G is the 2d solitary wave solution. It is very interesting to see that, although the stationary
solitary wave solution is not stable, the new bifurcating state is connected to the 2d solitary wave
solution: it is a solitary wave solution with time-varying parameters, i.e. the width is decreasing with
time, leading to a singularity within a finite time. Because of space limitations , we cannot present
more details and numerical results here. They will be published elsewhere [7]. We should note that
the area of collapsing solutions is a very active one and for arbitrary initial conditions the question
of the collapse as an effective dissipation mechanism in plasmas is still open.

Next, we turn to an essentially non-integrable problem (with dissipative and driving terms) to
discuss self-organization in nonlinear drift-waves. When dissipative and driving terms are ignored,
the basic equation is the Hasegawa-Mima-equation [8] for the normalized electrostatic potential ¢:

(1 -V — knOyp =2 x Vé-VV3. (6)

Here «, is a normalized density-gradient-coefficient. Equation (5) is non-integrable, but has 2d
dipolar vortex solutions. The latter (in general) do not interact elastically, but show a surprising
stability against small perturbations. We now generalize (6) by including self-consistently driving
and damping terms due to collisions in the same way as done by Kono and Miyashita [9]. In plasma
physics the corresponding linear instability is known as the collisional drift instability. Instead of (6)
then

B(1 = V2 — ="-8,)¢ + [—rndy + "62+uv4]¢=2xv¢-vv2¢ N

Dkﬁ Ic2 v

appears. In (7), D = Q./v. characterizes the collisional contributions and & is an effective parallel
wavelength. A numerical simulation [9,10] of (7) shows the self-organization of an arbitrary initial
state into a dipolar vortex. The maximum vortex with respect to the (numerically prescribed) box
size appears. This end-result is shown in Fig. 2a. For this simulation we started at time ¢t = 0 with
random noise of low level. The unstable (linear) modes grow, transfer energy via mode-coupling to
other modes, and a parametric instability amplifies small-k contributions. This numerical behavior
can be understood analytically. A key-role in the interpretation of the final result plays the socalled
self-organization hypothesis [11]. It is formulated for nonlinear partial differential equations with
dissipation which contain two (or more than two) quadratic (or higher order) conserved quantities in
the absence of dissipation. In the case of (6) we shall apply the self-organization hypothesis for the
conserved quantities energy E[¢] = [ d?r[(1—V?)¢]? and enstrophy K[¢] = [ d®»[(1-V?)V2¢]%. The
hypothesis is formulated under the following two conditions: (i) There exists a selective dissipation
process among the conserved quantities E and K when the dissipation is introduced. That is, one
conserved quantity K decays faster than the other E. (ii) The nature of the mode-coupling through
the nonlinear terms in the equation is such that the modal cascade in the quantity F is towards
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small wavenumbers. Then it is assumed (and justified by numerics as, e.g., shown in Fig. 2a) that
the following hypothesis holds: The randomly excited field ¢ is expected to reach a quasi-stationary
state in which ¢ is described by a deterministic field equation. The latter is obtained by minimizing
K within the constraint that F is kept constant: 6K — ASE = 0. It is straightforward to show that
this variational principle leads to the (quasi-stationary) equation for dipole solutions of (6) [in the
absence of dissipation).

We have developed a method and derived concrete equations to explain the self-organization

Fig. 2 (a) Self-organization of a big dipolar vortez as a result of numerical simulation of (7).
(b) A chain of 2d KdV-type solitary waves appear when (18) is solved.

hypothesis from first principles [12]. Abbreviating the linear operator appearing on the left-hand-
side of (7) by L we rewrite (7) in the form

Le+{4, V) =0. ®)

Here, {...,...} denotes the Poisson-bracket. Next we separate the normalized potential 4 into a regular
(¢%) and a turbulent (¢7) component in the usual way by making use of a turbulent ensemble and the
corresponding averaging denoted by {...). Thus when introducing ¢ = ¢® + ¢7 we assume (¢7) = 0.
Within this concept we obtain from (8) the coupled equations

Lo® + {87, V26R) = —({¢7, V76", (9)

LgT+{¢7,V?9T} = (147, V7¢7}) = —{¢", V*¢"} - {¢", V"¢7} . (10)
In the absence of turbulence (¢7 = 0), the left-hand-side of (9) determines in the usual way the
regular structures. On the other hand, in the absence of regular structures, i.e. when the right-hand-
side of (10) is zero, the last equation will be similar to that known from (weak) turbulence theory
[13]. Linearizing (9) and (10) leads after some tedious algebra [12] to the growth rate

_ kS
=T R

/ KW dks > 0, (11)

where Wi = 3(1 + k?){|¢7[®)} is the zeroth order turbulent spectral energy density, which has been
assumed, in lowest order and for demostration, to be isotropic.
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Besides this analytical attempt to justify the self-organization hypothesis we performed a numerical
simulation for a slightly different model equation compared to (6). In the presence of a temperature
gradient also a KdV-type nonlinearity appears in the basic equation [10]

KA

Dk

_ fn
Dkﬁ

a1 0y)¢ + [—(u + £a)0y + 2502 + pV¢ + ud, V¢ + k1¢d,¢ = 2 X V- VVi. (12)
Here xr is the temperature-gradient-coeflicient, and we have transformed (with velocity u) into a
co-moving frame. The interesting difference with respect to (6) is that (in the dissipationfree case)
the relevant conserved quantities change from E[g] and K[¢] to E[¢] = [ d?r[(V¢)? — 524°] and
K[¢] = [ d*r¢?, respectively. Now, the self-organization hypothesis yields the variational principle
§E— 6K = 0 whose solutions are 2d monopole structures of the KdV-type [see Fig. 1b]. And indeed
a numerical simulation of (12) confirms this conjecture. In contrast to the single big dipolar vortex
for (7) a chain of 2d solitary waves (zonal flow) appears for the model (12) as shown in Fig. 2b. The
stability of the 2d solitary waves, even in the presence of the twisting nonlinearity, can be proven,
whereas the dipolar vortex is structurally unstable with respect to perturbations in form of a scalar
nonlinearity.

2. Self-organized solitary waves as constituents of nonlinear dynamics

We now turn to the question whether solitary waves are “robust”. There are three aspects con-
nected with the definition of robustness. The first one is related to linear and nonlinear stability of
the exact solutions within the corresponding models. Also the elasticity or inelasticity of collisions
falls into this first category. The second one consists of the question whether solitary collective
excitations can overcome individual chaotic motion, disturbances due to external fluctuations, etc.
The third one is mainly considered here and goes one step further. Can solitary waves (as a whole)
behave chaotically in time so that we can consider them as constituents of deterministic chaos?

Let us start with a few remarks with respect to the second aspect. (The first one was already touched
in the previous section 1.) A simple example might be helpful. In hydrogen-bonded chains solitary
waves are found as the solutions of, e.g., the two-component model [14]

d’u, w? 6U(un; Pn)

_dt2 = Up4t — 2u,. + Un-1 — o 6“» ) (13)
& pn
-thz— = Pnt1 = 20 + pa-t — Qa(on — A). (14)

Here, U is in general a double-well potential for the hydrogen-bonded proton; it is created by heavy
ions. The potential U is assumed to be a function of two variables: the displacement u, of the n-th
proton from the middle of the hydrogen bridge and the relative displacement p,, of the neighbouring
heavy ions creating this potential. Solitary wave solutions consist of kinks (or anti-kinks) for the
proton displacement and are accompanied by disturbances in the heavy ion sublattice. From the
individual (proton) point of view, the motion of the particle in an unharmonic potential is driven
by the external motion of the heavy ions. Thus, when collective solitary wave excitations are not
present, the position of the proton can be random. We [15] have verified this statement by a model
calculation for the motion of a proton in the superposition of two Morse-potentials created by the
two neighbouring heavy ions (see Fig. 3). The equation

$Pu 0 - du
=T elwa =1y (15)

was solved, where 7 is a damping decrement and U has the form shown in Fig. 3. The superposition
of two Morse-potentials depends on the (normalized) coordinate p. For the latter we have assumed
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an harmonic time-dependence p = p,sin(£2t) to simulate the dynamical behavior of the heavy sub-
lattice in the absence of collective solitary wave excitations. As as result, similar to the finding
for the Duffing oscillator, chaos can appear. This shows that solitary wave solutions are extremely
important (e.g. for transport) since they can override the otherwise chaotic behavior. In this sense
they can be called robust.

Another important feature in this respect is the fact that solitary waves can even render an effective
transport through random media. As is well-known [16], in linear systems disorder causes Anderson
localization, i.e. an exponential decay of the transmission coefficient with the system length. But it
has been shown that nonlinearity can lead via soliton formation to an effective transmission mecha-
nism. We have investigated this phenomenon for a similar model as that one originally treated by
Caputo et al. [17]. Especially in biological systems, where the environment always causes irregulari-
ties in the chain, the formation of solitary waves, their propagation characteristics, and stability are
now under active investigation [18].

Here we would like to discuss in more detail the other type of robustness which qualifies solitary

N

Fig. 3 (a) Motion of a proton in the superposition of two Morse-potentials created by two heavy ions.
(b) Changes of the potential with p as a parameter.

—

u

1+p

waves as constituents for nonlinear dynamics, with possible temporal chaos. Let us demonstrate
this on the paradigm of a perturbed NLS equation. As has been first demostrated by Nozaki and
Bekki [19], for a model of damped nonlinear Langmuir waves driven in a rf capacitor field,

i0q + O2q + 2|q|*q = —~ivq — iae™*, (16)

the period-doubling route to temporal chaos occurs for phase-locked solitary waves. Analyzing (16),
we can derive the existence condition for a phase-locked solitary wave as 2yw/?/ra < 1. The stability
of this phase-locked solitary wave was investigated analytically [20]; at finite driving amplitudes (and
for fixed damping rate v and prescribed frequency w) an instability in form of a Hopf bifurcation
takes place and a regulary pulsating solitary wave appears. In a reduced phase-space, the phase-
locked solitary wave corresponds to a limit-cycle. With increasing values of driving amplitudes,
the system undergoes a series of torus-doubling bifurcations for which the universal Feigenbaum
constants 8, = 4.6692... and @, = 2.50291... could be recovered quite accurately. The situation
changes when two space dimensions are taken into account. Then the collapsing solutions can be
new attractors as has been discussed in Sec. 1. On the other hand, the whole scenario depends on
the form of the “perturbations”. If, e.g., we change from (16) to

i0q + 82q + lql*q = ~iaq — Bg — ~¢* am)

or
i0q+ g+ plglfg=1—zq (18)
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for nonlinear modulated cross-waves in Faraday resonance [21] or radiation in laser irradiated in-
homogeneous plasmas [22], respectively, we can find different nonlinear dynamical behaviors with
spatial coherence. The first one shows bifurcations into cnoidal-wave-like functions whereas for the
second one the quasi-periodic route to temporal chaos occurs. Both models have, in certain param-
eter regimes, stable solutions [21-23] with spatial coherence; see. Fig. 4. Here, we would like to

Fig. 4 (a) Appearence of a cnoidal-wave-type stable attractor for § = ~1, @ = 1, and v = 1.6 in
(17). (b) Space-time-plot of a solution of (18) for p = 1. A similar regular emission and (accelerated)
propagation occurs for 0.7 <p <1.2. ‘

emphasize a new point in the region of a stable solitary solution to (17). When the driving ampli-
tude is time-modulated [24], i.e. ¥ = 4, cos ¢, similar to (16) a phase-locked solitary wave appears
which can take part in toto in the nonlinear dynamics as a spatially coherent structure. At the first
glance, this looks similar to the phenomena detected in (16) and indeed all the tools used there can
also be applied here. However, because of the possible bifurcation in space, an interesting interplay
between nonlinear dynamics with spatial coherence and simultaneous bifurcation in space can take
place. Details will be published elsewhere [25].

8. Summary and conclusions

In this contribution we have given an overview over the possibilities of self-organization and sub-
sequent nonlinear dynamics with spatially coherent structures. The presentation is based on several
new and original results which will be published in more details in subsequent publications. The main
conclusions are the following: (i) In non-integrable systems stable solitary wave structures are formed
by self-organization. (i) The solitary (and spatially coherent) structures are robust in the sense that
they can override individual chaotic behavior and contribute to transport even in disordered systems.
(iii) Interesting and generic nonlinear dynamics takes place, with the spatially coherent structures
as constituents.

Acknowledgment: This research is supported by the Deutsche Forschungsgemeinschaft through
SFB 237.
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A process of nonlinear structure formation on a two-dimensional lattice is proposed. The basic
model consists: of a two-dimensional lattice equipped at each node with a molecule or dipole
rotating in the lattice plane. The interactions involved in the model are reduced to a periodic
potential and nonlinear couplings between first-nearest molecules in the two directions of the
lattice. Such a discrete system can be applied to the problem of molecule adsorption on a
substrate crystal surface, for instance. The continuum approximation of the model leads to
a 2-D sine-Gordon system including nonlinear couplings, which itself can be reduced to a 2-D
nonlinear Schrédinger equation in the low amplitude limit. Spatio-temporal structure formation
is investigated by means of numerical simulations. These nonlinear structures are caused by
modulational instabilities of initial steady states of the two-dimensional system. Moreover, the
analogy between the numerically generated patterns and vortex-like excitations in a lattice is
also discussed.

1. - INTRODUCTION

Particular interest has been devoted, recently, to the dynamics of structures on two di-
mensional nonlinear systems [1,2]. These structures (dislocations, domain walls, vortices,
etc. ....) play an important role in the material properties and they become crutial in nonlinear
physics involved in the problem of adsorbates deposited on crystal surfaces [3], in superlattices of
ultra thin layers or in large area Josephson jonctions [4], for instance. Here, a particular empha-
sis is placed on the dynamical pattern formation mediated by modulational instability
on a two-dimensional Hamiltonian model.

The paper is divided as follows : in Section 2 we introduce our model and show how the
basic equation for the lattice model can be reduced to a 2-D nonlinear Schrodinger equation
which can exhibit modulational instabilities under certain conditions. In Section 3 we study a
particular dynamical regime by means of numerical sinulations which then place the role of the
modulational instability in evidence for the pattern formation. Then, beyond the instability a
self-organisation of 2-D coherent structures takes place.
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x
Fig. 1 : the two ~ dimensional lattice model equipped,

at each node, with rotating molecule
(the arrow indicates the molecule orientation).

2. - THE MODEL

2.1. - Basic discrete equations

The basic model is made of a two-dimensional lattice equipped, at each node, with a rotator
or rigid rotating molecule. Namely, each molecule can rotate in the lattice plane. At site
(m,n) the angle of rotation is ®(m,n) (see Fig.1). Each molecule interacts nonlinearly with
its first-nearest neighbors and with a periodic substrate potential. Under these conditions
the equations of the rotational motion of the molecules can be written as

$(m,n) = AL(®(m + 1,n) ~ 28(m,n) + &(m — 1,n)) + Ar(&(m,n + 1) — 28(m, n)
+ ®(m,n — 1)) + BL, [(8(m + 1,n) — &(m,n))* — (2(m,n) — &(m — l,n))a]
+ Br [(®(m,n +1) ~ ®(m,n))* — (®(m, n) — B(m,n ~1))*]
—wisin(®(m,n)) . (1)

The inertia of the molecules has been set to unit for ease of presentation. The coefficients Az, and
Ar are the linear couplings in the longitudinal and transverse directions while the parameters By,
and Br are the nonlinear couplings in the longitudinal and transverse directions, respectively.
At length, the last term in Eq.(1) is due to the substrate potential where w? is the strength
of the potential barrier and wy can be interpreted as the frequency of small oscillations in the
bottom of the potential wells. Note, if the nonlinear coupling is removed (B = 0 and Br = 0)
Eq.(1) casts in the 2-D Frenkel-Kontorova model (or the 2-D discrete sine-Gordon model [5]).
In the following section we restrict our study to the isotropic case, ie. A;, = A7 = A and
BL = Br = B.
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2.2. - Continuum approximation

On using a classical procedure we consider the long wave-length limit and reach the continuum
approximation of the discrete equations (1) (i.e. by expanding in Taylor series ®(m,n) in terms
of its derivatives about the point (z = ma,y = na)). Then Eq.(1) becomes

= A(Rur +8y) + (4/12) (Bax +24y) + B((8), +(23),) — wBsin(®) , (2

where the variable changes z/a and y/a have been considered (a being the lattice spacing). We
notice that if, first, the nonlinear coupling (B = 0) and, second, the fourth order derivatives are
dropped we recover the usual 2-D sine-Gordon equation [6]. On the other hand, if the substrate
potential is removed, Eq.(2) is then somewhat similar to a 2-D Boussinesq equation. Neverthe-
less, the case for which the substrat potential and nonlinear coupling are both considered is of
particular interest for pattern formation.

From Eq.(2), we now look for plane wave solutions with a slowly varying envelope of the
form

®(z,y,t) = P(X, Y, T)e® ) 4 ce. (3)

where the wave vector is k = (ki, k1) and w is the circular frequency of the carrier part of the
plane wave and we have also set r = (x,y). Moreover the envelope 3 is a function of the slow
space and time variables defined by

X =ex, Y=ey and T=¢et . (4)

Where ¢ is a small parameter. In addition, the small amplitude limit has been considered (this
allows us to expand the sine function up to the third order with respect to ®). On inserting (3)
into (2) we obtain the nonlinear dispersion relation

w? = Wi + A (K} + k%) — (4/12) (K + k%) + (3BK} + 3BkS — w2/2) [¥* . (5)

This relation represents the key equation which allows us to reduce Eq.(2) to a 2-D nonlinear
Schrédinger equation. It must be noticed that the first three terms in the right hand side of
Eq.(5) are the linear part whereas the last term is the nonlinear contribution to the dispersion
relation.

2.3. - 2-D nonlinear Schrodinger equation and modulational instability

Now, if we consider slow modulations in space and time of a carrier wave with wave numbers
krc and kg, we can formally expand the dispersion relation (5) around the carrier parameters
(ki = kiLe, kr = kr. and || = 0) and we arrive at

Ow Ow 1 2 62_(4)-
wmue = (u=k (5) +Or—kn) () +3 0=k (5).
1 2 (0w *w

- - —_— o - _ 6

Ow ) 2

+ e ) [

o
The subscript ¢ means that all partial derivatives are taken for the carrier wave features. Then,
let the operators ky — kpc : —18/0X, kr — kr. : —10/0Y and w — w, : i8/8T. The frequency
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we is the carrier frequency and it is provided by the linear part of the dispersion relation (5).
On applying these operators to the amplitude function ¥(X,Y,T), we obtain then the following
equation

2 (Y7 + vg19x + veripy) + Pipxx + Pepyy + Pspxy + QP =0 (7.a)

where we have set

Py = (A]u?) [} + ARp, — (3AKL, + Akh, + 6AK Kb, +6wiik,) /12] , ()
Py = (A/2) [} + ARY, — (34k%, + AR}, + 6AKL M, +6u2i3) /12] , (1)
Py =— A?(1 — kc/6) (1 — krc/6) k} k3. [2we (7.d)

Q = (w} ~ 6Bk, — 6Bk}, /2we . (Te)

On considering a frame moving with the wave and using the transformations { = X — v T,
71 =Y — vgrT, next (vyr, and vy7 being the group velocities in the longitudinal and transverse
directions), we can rewrite Eq.(7.a) in the standard 2-D nonlinear Schridinger equation.
The latter equation has been extensively studied especially in plasma physics [7]. With the
help of this 2-D nonlinear Schrédinger equation we can investigate the stability of a plane wave
traveling on the lattice. A linear analysis of small pertubations of the elementary plane wave
solution leads to a criterion of stability or instability maned modulational instability [8].
Skipping all the analytic details, the region of instability are given by

0<qi <2¢3Q/P;, 0<qr <24(Q/P2 , (8)

where 1 is the constant amplitude of the carrier plane wave, q; and ¢r are the wave numbers
of the perturbation in the longitudinal and transverse directions, respectively. Accordingly, a
perturbation with a wave vector (gr, gr) satisfying (8) can trigger instabilities in both directions
of the lattice. However, such conditions depend, of course, on the respective signs of the products

QP; and QP,.

3. - NUMERICAL SIMULATIONS

We now present the preliminary numerical investigations of the dynamics of structure formation
initialized by modulational instabilities. Specifically, an initial carrier wave propagating in the x
(or y) direction (5 periods in the propagating direction, the wave number of the carrier wave in
z is kp. ~ 0.35 corresponding to the long wave-length limit) is modulated by adding a random
noise of small amplitude to the initial velocity field (the noise is removed afterwards). It is
important to emphasize that the numerical simulations are directly performed on the original
lattice model (see Eq.(1)). A lattice made of 91 x 70 points is considered and periodic boundary
conditions in # and y directions are used for the numerical simulations. Under these conditions
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the 2-D nonlinear Schrédinger equation describes the dynamical behavior of the system in the
very beginning of the instability (at the birth of the instability).
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Fig. 2 : Numerical simulations of the discrete system Eq.(1) (A =0.1,
B =02, w?=04) at t=1200, (a) contour line graphe for the rotation
(full line ® > 0 and dashed line & < 0), (b) the corresponding
pseudo — velocities and (c) the power spectrum exhibiting
additional wave number components due to instabilities

The most significant results are collected together in Fig.2. Figure 2.a represents the picture
of the contour lines for the rotation ®. This picture exhibits, after a long time, very clear
localized structures, in fact these structures are moving on the lattice. We can observe small
pertubations due to the phonon radiations but they remain rather weak. On introducing a
"pseudo-velocity” associated with the rotation @ (i.e. the gradient of ®) as in perfect fluid
hydrodynamics, we can plot a lattice of pseudo-velocity as shown in Fig.2b (each arrow corre-
sponds to the velocity vector). The picture thus numerically generated exhibits sorts of vortex-
like structures. Finally, the power spectrum of the lattice dynamics is given in Fig.2c showing
then additional harmonic components around the high peak corresponding to the carrier fre-
quency. These components are produced by the instabilities. From Fig.2.c, we can compare the
range of the instability wave vectors to that given by the conditions (8) and a good agreement is
obtained. It is worthwhile noting that, here, in contrast to the pure 2-D nonlinear Schrédinger
equation the drastic collapse does not occur [7,9], this emerges from saturation effects because
of the substrat potential and discreteness effects. ’

4. - CONCLUSIONS

We have studied the formation of nonlinear localized structures on a two- dimensional lattice
model. We have also shown that these structures are the result of the modulational instabilities



233

of a steady plane wave solution. The most significant idea, which can be underlined in the
present work, is that we have been able to reduce the rather complicated dynamics of the lattice
to the 2-D nonlinear Schrodinger equation in the long wave-length and small amplitude limits.
Although the 2-D nonlinear Schrodinger equation is limited to the birth of the modulational
instability, this informs us about the selection mechanism of wave vectors of the instabilities
taking place both in longitudinal and transverse directions. In short, the modulational instabil-
ity is a natural vehicle for the nonlinear structure formation. It seems that the characteristic
radius of the coherent structures thus produced can be connected with the growth rate of the
instabilities as well as the model parameters. This point should be clarified in a further work.
In addition, extensions of the study to the specific problems of vortex-like and spiral exci-
tations will be examined [1,10,11]. Finally, the relative influence of the substrat potential and
nonlinear coupling (see the definition of the coefficients of the nonlinear Schrodinger equation,
Eqs(7.a)-(7.¢)) will be studied in more detail by means of an analytical approach and numerical
simulations.
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Abstract

The phase diagram of a triangular lattice with competitive interactions is obtained
at finite temperatures. At high temperatures the existence of an incomplete Devil’s
staircase points to the existence of incommensurate states near the disorder line. 1-d
domain walls and large periodicity 2-d domains are discussed.

1. Introduction

Polytypes [1] is a class of solids, which have the common characteristic to appear in var-
ious phases, under small changes in temperature, pressure or other physical parameters.
The ground state of such a system may be a periodic structure with a short wavelength
(most commonly observed), a long commensurate periodicity, or even incommensu-
rate formations. As examples one can mention the classical structural polytype silicon
carbide that presents a large sequence of short period phases, the rare-gas monolay-
ers adsorbed in graphite (2-d systems) that show commensurate and incommensurate
phases [2] and the magnetic substance C'eSb with an experimentaly observed succesion
of long period phases [3].

Although growth kinetics around screw dislocations could contribute to modulated
structures, it is commonly accepted that they can exist as stable states in thermody-
namic equilibrium with some form of ” competition”[4]. This may arise either by antag-
onistic effective interactions between constituent units , or by competing periodicities.
In many cases short range competing interactions give a rather consistent explanation
of the multiplicity of phases encountered in polytypes or other structures [1]. Two main
categories of models have been proposed to explain the behavior of systems developing
modulated structures. These are the discrete variable models, such as the ANNNI type
(5] or the clock type models [6] and the continuous variable models of the type of the
Frenkel-Kontorova [7,8]. In both the above microscopic class of models the lattice is
considered discrete.

In the present work we shall be dealing with a continuous variable model, which
can be of one or two degrees of freedom. In the first case, it can represent on one hand a
displacement perpendicular to the plane as in the surface reconstruction of the Sz (111)
surface [9]. On the other hand the variable can be an angle representing rotations,
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as in an N, molecule adsorbed on graphite [10,11] which by lowering the temperature
changes to V3 x /3 and 2 x 1 phases. For two degrees of freedom a 2-d model has been
proposed [12,13] to explain the three phases of LiIO;.

Very often the competition does not come from the substrate and the interplanar
forces, but can be a result of interactions among the atoms as was done in a model
used to describe 1-d ferroelectrics [14,15]. In this case for the ground state to be
incommensurate one needs at least up to 3rd neighbour interactions. By considering
the nearest neighbour strains in the 1-d chain problem, one can transfer to one with a
substrate and up to 2nd neighbour interactions.

In the following we shall be presenting a nonlinear model on a triangular lattice, at
finite temperature, whose phase diagram exhibits short and long period commensurate
phases. In addition, incommensurate phases leave their signature in the form of a
?devil’s staircase”. Also, domain walls are studied, either in 1- or 2—-dimensions.

2. Model and Methods

Consider atoms or molecules (of mass M) forming a triangular lattice, having one de-
gree of freedom (displacement or rotation) denoted by u, .. Each particle interacts
harmonically with its first and second neighbours with a force constant f; and f; re-
spectively. An on-site nonlinear double well potential, of the form of ¢* acts on each
site (g0,94 > 0). The Hamiltonian of the system is the following:

2
1. .. 1 go
" Z{EM% T (”i’m ) ‘gZ)
n,m

1 1
+ Z §f1(UNN —tup,m)? + Z EfZ(UNNN - un,m)z}-
NN

NNN

(1)

The last two terms denote summation over nearest neighbours (NN) and next-nearest
neighbours (NNN), respectively. The fact that the on-site potential is double well
and that f;, fzzo arises a conflict between the respective terms in H, and as a result
commensurate, incommensurate and even chaotic phases may appear.

Our aim is to construct a phase diagram in the space of the reduced force constants
¢1 = f1/2g0, ¢c2 = f2/2g0 (normalized to the frequency of the well minimum) and the
temperature. In order to do that one should in principle calculate the full quantum
mechanical free energy of the system for every periodicity, as a function of temperature.
Since this is an almost impossible task, we confine ourselves to a semi—quantum approx-
imation, based on the Gibbs-Bogoliubov inequality [16]. It gives an upper bound to the
free energy in question F, by the use of an auxiliary Hamiltonian H,.

F<F=Fotr <H—-Hp>p. (2)
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The upper bound to F is approximated by F, (the free energy corresponding to Hy) plus
a correction term. The above expectation value is calculated with the known quantum
density matrix pg of Hy.

The trial Hamiltonian H is chosen in the frame of the independent—site approxi-
mation, to be a set of displaced harmonic oscillators, with different frequency at each
site.

Mo 23 [T Mt — tn)? ©
0= 2 '_M 6u$1'm + Wo,m\Un,m — Enm .

n,m

The density matrix pp and the free energy Fy of such a system are known exactly,
and therefore the r.h.s of Eq.(2) can be explicitely calculated. The ap,m and wy ., are
considered as variational parameters and can be obtained by minimizing the free energy.

An optimisation method for the free energy that has proven to be very succesfull is
the Monte Carlo Simulated Annealing (MCSA). It has been introduced by Kirkpartick
et al {17] using the Metropolis Monte Carlo algorithm [18]. It provides an efficient
method to determine a global minimum, while with the possibility of climbing over
barriers, it avoids being trapped into local minima. The algorithm consists of a basic
step, which is used repeatedly in order to simulate a collection of atoms at a given
"ictitious” temperature. In each step, an atom is given a small random displacement
and the resulting change in energy of the system is computed. The change is accepted
unless the energy is higher, in which case the new configuration is accepted, if the
probability factor exp (—~AE/kT) is larger than a random number. Here AE is the
increase in energy from the previous configuration. Thus the system can get out of a
local minimum well, and by lowering the "fictitious” temperature, to find the global
minimum well. ,

There are certain parameters involved in this algorithm, as the sequence of lowering
the "fictitious” temperature, the number of steps at each temperature, the displacement
step, and others, which in practice for finite computer time, must be determined em-
pirically [19], since they strongly depend on the particular form of the function to be
minimized. Following the Monte Carlo Simulated Annealing method one proceeds with
the Steepest Descent method to locate the exact position of the minimum.

3. Phase Diagram of Periodic Structures and Domain Walls

For the construction of the phase diagram of our model system in the (¢;, ¢z, 7) phase
space, (7 being the temperature in some convienient units), we have to search at each
phase space point for the ground state. For this purpose we compare for each tempera-
ture and force constants, the free energies of quasi-one—dimensional periodic structures
from 1 X 1 up to 15 x 1 and of 2-dimensional ones up to 3 x 3. The higher 2-dimensional
periodic structures were examined by calculating the number of opposite sign first and
second neighbours. Depending on the sign of the neighbouring interactions, the vast
majority of the 2-d structures have been excluded, and only the ambiguous cases were
treated numerically, due to the computing time required. For clarity, we present in
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Figure 1 a cross—section of the full phase diagram at constant second neighbour inter-
action parameter c; = —0.5. (For other values of c, refer to [20]). The notation used to
describe one particular configuration is to note the number of consecutive atoms that
have the same sign displacement, e.g. a 7 X 1 structure with signs of displacements as
(+ + — — 4+ + —) is indicated as 2°1.

Figure 1 Phase diagram in the 7, ¢; plane for ¢, = 0.5.

The great variety of structures observed in this diagram must be attributed to the
great competition between the two ordering mechanisms, the on—site potential and the
harmonic interactions of opposite sign. At high temperatures and positive first neigh-
bour interactions the ground state is the para~phase, in which the average displacement
of all atoms is zero, i.e. they lie above the potential wells of the ¢* potential. It is impor-
tant to note that an analogous situation in a classical calculation at zero temperature
would be unstable.

For both the first and second neighbour interactions being negative, the structures
that persist at high temperatures are those that have the highest number of large rel-
ative displacements between first and second neighbours. These are the 2 X 1 and the
symmetric 3 x 1 (40-).

At lower temperatures let us concentrate on the part of the diagram between the
4 x 1 and the 1 x 1 phase. A close look reveals that between two configurations, a third
appears with a periodicity the sum of the two. A more quantitative picture of this fact
can be obtained by plotting the wavevector ¢ = 27ws/N of each state against one of the
systems parameters. The number 2s accounts for the number of sign changes within
one period consisting of N atoms. In the following Figure 2, we are presenting a plot of
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s/N versus ¢, for a high temperature. The maximum number of atoms within a period
is N = 30.

At low temperatures [20], low periodicities occupy large regions of the diagram,
but the higher periodicities form a characteristic curve described as a complete devil’s
staircase. This implies that if there was an infinitely fine grid in ¢; and an infinitely large
period searched, then all the rational fractions s/N could be found in the plot. This
means that the character of this devil’s staircase is complete. At higher temperatures
though, and just below the border to the para-phase, the devil’s staircase of Fig. 2
appears to have complete and incomplete parts. This is a strong indication of the
existence of an incommensurate phase, near the transition to the para—phase. For a
more quantitative description of such an incommensurate phase one has to perform
discrete mapping techniques [21], which however, are plagued by numerical difficulties
since the physically stable states of minimum free energy correspond to unstable orbits
of the map.

Devils Staircase, c,=—0.5, 7=1.6, 30x1 periodicities checked

0.3

T T T T T T T

s/N

o 1 4 ] " 1 1 " -

0.6 0.8 1 1.2 1.4

=)

Figure 2 Devil’s staircases for fixed c; = —0.5 and 7 = 1.6.

It has been proposed that there is a close relation between the existence of domain
wall structures and the incommensurate to commensurate phase transition. Also, it is
important to know when and if they can become ground state, in particular on a discrete
lattice. On the triangular lattice one can have either 2-d or quasi-one—dimensional walls.
The simplest one is the so—called ferro domain wall, of the later kind, that separates
two regions with periodicity 1 x 1, but opposite sign. The method we have studied
such formations is the Steepest Descent method, and thus calculated the arrangement
of atoms with the lowest free energy.
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Figure 3 Plot of AF = (Fyx1/Fwau)—1 for the ferro wall vs ¢; at ¢, = —0.5 and varying
7=0.3,0.5,0.7,1.,1.2,1.5. Negative curves are reflected and denoted as "folded” (f).

Let us consider the ferro domain wall free energy in relation to the ferroelectric 1 x1
state. It is clear that if the wall free energy becomes lower than the respective 1 x 1
then the later is no longer the ground state. We shall concentrate in the region between
the period 1 and the modulated phases in the phase diagram of Fig. 1. In Figure 3
we make a log-plot of the quantity (Fixi/Fuwau) — 1 as a function of ¢; for various
temperatures and fixed c;. For each temperature there are two curves corresponding
to positive and negative (folded) values of the quantity plotted. Moving from higher to
lower c; values, for the same temperature, the wall free energy becomes lower than 1 x1,
when the above quantity is positive. This ¢;,7 value is near the border line between
1 x 1 and modulated phases in the diagram. Conversely, when a domain wall becomes
energetically favorable it usually means that a modulated phase is the ground state. It
was never found, although searched thoroughly a wall being a ground state.

The 2~dimensional walls seem to be better candidates for the ground state due to
entropy gain. The pattern shown in Figure 4 is a triangular wall formation, with a 9 x 9
unit cell, whose short diagonal is a domain wall between two 3 X 3 structures. Similar
to this structure was found to be ground state in an Ising spin system [22]. We have
found that such a formation is stable at high temperatures but its free energy is always
slightly lower that the 3 x 3. This leads us to the conclusion that it is a metastable
state which could become gound state if additional interactions were important.
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Figure 4 Triangular domain structure (9 X 9) consisted by the 3 x 3 asymmetric phase
and 2 x 1.

We have extended the calculations to a two degrees of freedom system and applied
it to LiIO;. The phase diagram is in good agreement with the experimentally observed
a — « transition and previous numerical classical equilibrium calculations. Of course
the zero point energy introduces even at T = 0 a region in the phase digram, where the
para—phase is the ground state [13].

4. Concluding Remarks

In summary, using a semi—quantum variational principle based on the Gibbs-Bogoliubov
inequality and the MCSA optimization method, we can obtain the phase diagram for
a 2-d model with competitive interactions at finite temperatures. The phase diagram
shows some similarities with 1-d ANNNI models except that a number of 2-d structures
appear. Sequences of ground states given in the phase diagram have also been observed
in CeSb [1] by varying a physical parameter like temperature.

The inclusion of weak longer range interactions does not change the phase diagram,
while for strong we can expect significant changes. The degree of changes depends on
n;, i.e. the number of ith neighbours with large relative displacements and of course the
surface symmetry. This is evident also from lattice gas models of surface reconstruction,
where as a function of overlayer coverage, different range interactions come into play and
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the corresponding ground state can be very different. Assymetries in the interactions
can also influence the ground state. These effects are under investigation along with non
convex interplanar nonlinear interactions and interactions that include strain gradient
terms.
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INTERACTIONS OF SOLITONS in (24+1) DIMENSIONS
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Abstract: We consider instanton solutions of the CPY models in two
Euclidean dimensions as solitons of the same models in (2+1) dimensions.
We find that, in general, the solitons tend to shrink so to stabilise them
we add special potential and skyrme-like terms. We show that in head-
on collisions the solitons scatter at 90° to the direction of their original
motion and that they also undergo a shift along their trajectories.

1. INTRODUCTION

Consider the scattering of two solitons in any relativistic (141) di-
mensional model, such as the well known Sine-Gordon model. Imagine
that one soliton moves with velocity v1, the other with velocity v and
that, at some time t = fj, they are well separated and their separation
is 6. If the velocities of the solitons are such that they approach each
other then after a certain length of time they will interact (and at that
time the description of the system in terms of two isolated solitons ceases
to be applicable) but then, some time later, they will emerge from the
scattering region and later on will become well separated again. Looking
at the positions of the solitons at this time, we find that each is at a place
different from where it would have reached, had there been no interaction
between them. We see that one effect of their interaction is to shift the
solitons along their trajectories, the direction and the magnitude of this
shift being determined by the strength of the interaction. All this is well
known and has been observed in many models.

Let us now increase the spatial dimension by one and look at the
scattering of solitons in (241) dimensions. What would be the corre-
sponding properties? To answer this question we observe, that on purely
kinematical grounds, there are more possibilities. As solitons correspond
to extended structures, we see, that as they approach each other they
can either experience:

1) a head on,
2) a small impact parameter or
3) a large impact parameter collision.

In the latter case, if the impact parameter is larger than the size of
each soliton (in particular if there are no net forces acting on the solitons)
we would expect the solitons to pass each other experiencing only small
perturbations due to their interactions.
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The most interesting are clearly head-on collisions and the scattering
at very small impact parameters. So what happens with solitons in such
scatterings? To try to answer this question we have to decide what we
mean by a soliton in (2+1) dimensions. Clearly, we would expect it to
represent at each value of time a localised but spatially extended structure
of finite energy. So what model should we use and will the results depend
on its choice?

Most of the properties of solitons in (141) dimensions are associated
with the integrability of the underlying theory. Unfortunately, although
several integrable models in (2+1) dimensions are known, none of them
is relativistically covariant. But why should we consider a relativistically
covariant model? There are many reasons; let us mention only that static
extended structures arise often in many such theories and, in particular,
many properties of the physical proton follow quite naturally from its
description in terms of such an extended structure in a phenomenologi-
cally successful “Skyrme model of the proton” (of course, in a relativistic
model in (3+1) dimensions). So if we want to consider solitons in a rel-
ativistic model we cannot rely on the integrability of the model for the
properties of their scattering.

The simplest relativistic model in which we can study various prop-
erties of solitons in (2+1) dimensions is the S? o model, also called
t_l“le CP! model, which involves one real vector field of 3 components,
¢ = (¢1,¢%,¢%). In (2+1) dimensions qg is a function of the space-time
coordinates (t,z,y) which we will also write as (z°,z!, 2%). The model is
defined by the Lagrangian density

L = 1(0"9).(0u9), (1)

together with the constraint q_g $ =1, se. q_g lies on a unit sphere Si. In

(1) the Greek indices take values 0,1, 2 and label space-time coordinates,
and J, denotes partial differentiation with respect to z#. Note that we
have set the velocity of light, ¢, equal to unity, so that in all our calcula-
tions we can use dimensionless quantities. The Euler-Lagrange equations
derived from (1) are

9,6+ (0"3.9,9)8 = 0. @
For boundary conditions we take
&(7*,9,t) — q_b‘o(t) as r — 00, (3)

where (r,0) are polar coordinates and where q_ﬁ‘o is independent of the
polar angle 6. In two Buclidean dimensions (¢.e. taking ¢ to be indepen-
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dent of time) this condition ensures finiteness of the action and in (2+1)
dimensions it leads to a finite potential energy.

It is convenient to express the q—; fields in terms of their stereographic
projection onto the complex plane W

W+ W* W —-w* 1—|W|?
1 _ 2 - S LA 4
¢ 1+ W[’ ¢ Ty W ¢ 1+ W2 ¥

The W formulation is very useful, because it is in this formulation
that the static solutions take their simplest form; namely, as originally

shown by Belavin and Polyakov i and Woo™ they are given by W being
any rational function of either x + 1y or of  — sy. In this formulation the

Lagrangian density is given by
O Worw>

= aewEe @

where * denotes complex conjugation and the equations of motion are
given by
2W*((BW)? — (8.W)* ~ (8,W)?)

2
HW = 14+ |W]?

+ OEW + O2W.  (6)

The simplest nontrivial static solution of (6) is given by

wo=22"2 (7)

z—b’

where z = 241y and a, b and A are arbitrary complex numbers. It is easy
to calculate the energy density, F, corresponding to the static solution

(7). We find

AP o~ bP -
(Iz = b2 + |A]2 |z — a|?)?
and so we see that the extended structure of this solution has a bell-like
shape, with its position and size determined by

PPb o PPla b
PR+ T Iy
respectively. Taking the limit A — oo, b — oo while keeping their ratio

fixed (and still called A) allows us to consider W = A(z + iy — a) as
our candidate for a soliton of “size” A, which is positioned at a. In the

FE =
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same sense W = )\(x'l'iy_a%gw"'iy"'a), provides us with a field configuration

describing two such solitons (positioned at +a).

These solutions, strictly speaking, can be considered as soliton con-
figurations for the (2+1) dimensional model only if they are stable and
do not desintegrate when we consider their time evolution. So what is
their evolution? We performed several numerical studies using a 4th or-
der Runge-Kutta method of simulating time evolution. The calculations
were performed on fixed lattices which varied from 201 x 201 to 512 x 512,
with lattice spacing éz = 6y = 0.02. The time step was 0.01. We used

fixed boundary conditions for most of our simulations involving the ¢
fields (with some absorption on the boundaries) and the extrapolated
boundary conditions for the simulations involving the W; fields. We have
tested our results by changing the lattice size and varying the boundary
conditions and we are reasonably confident as to their validity.

2. CP! RESULTS

The obtained results reveal that when the solitons are sent initially at
zero impact parameter they scatter at 90°. At the same time, however,
they are unstable in the sense that they tend to change their size. We
have analysed this problem in some detail™ ™ . The observed instability

is due to the fact that the pure S? model (has no intrinsic scale and so
admits the existence of solitons of arbitrary size. Hence under small per-
turbations the solitons can either expand indefinitely or shrink to become
infinitely tall spikes of zero width. Our simulations have shown that this
is exactly what happens in this model. In fact, as soon as the solitons
are purturbed, e.g. start moving, they start shrinking. This is true not

only in the full simulation of the model but also' in the approximation
to the full simulation provided by the so-called “collective coordinate”

approach in which the evolution is approximated by the geodesic motion
on the manifold of static solutions.

However, even though the extended structures shrink, we can still
look at their scattering properties as they become very spiky only some
time after emerging from the scattering region. We can lengthen this time
by letting them expand as they move towards each other (in this case
they shrink less as they come out). In all cases the scattering proceeds
through the same intermediate stages; first the extended structures come
towards each other, then when they are close together they form a ring
and finally they emerge out of the ring at 90° to the original direction of
motion. We can follow their trajectory in the z,y plane; an example of
a typical simulation is shown in fig la; in fig 1b we show a plot of the
time dependence of the relative distance between the extended structures.
Looking at fig 1la we see that when the solitons are close together it is
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really difficult to talk about their positions (they are really in the shape
of a ring); when we think of their speeds and the positions they started at
and they find themselves at when they have emerged from the interaction
region we see that, in analogy to what happens in (141) dimensions,
their positions are translated forward along their trajectories. How much
are they shifted along their trajectories? This question is difficult to
answer as, due to the ring structure of their intermediate state, we do
not understand their trajectories. What happens when the two solitons
are on top of each other? Such a configuration would correspond to
W = u(z + iy — a)?. As its easy to see the energy density of such a
configuration is in the shape of a ring centered at z 4+ iy = a. Thus it
would seem natural to assume that the two solitons come on top of each
other before they scatter at 90°.
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To study the importance of the ring formation and/or the shrinking

of solitons we decided to go beyond the simplest S? model. To overcome
the shrinking one has to break the conformal invariance of the model.
This can be done by introducing a “Skyrme-like” and a potential term
to the Lagrangian. Such a model was introduced in ref. [5] and used
for many simulations. The “Skyrme-like” term of that model was later
shown to be uniquem so that the only arbitrariness resides in the form
of the potential term. Of course, the form of the potential term does
effect the details of the scattering, but all our simulations have shown ™
that the gross features are always the same. The introduction of the
new terms generates some forces between the solitons; in particular, if
we stick to the model of ref [5] these forces are repulsive and the only
static solution corresponds to one soliton of a fixed “size” (whose value
is determined by the parameters of the additional terms). The existence
of the repulsive forces introduces a “critical” velocity into the model;
in head-on collisions below a certain value of the velocity the solitons
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scatter back to back, above it they scatter at 90°. If one assumes that the
scattering at 90° proceeds through the intermediate stage of the solitons
“coming on top of each other” one can estimate the value of this critical
velocity by performing an energy balance; such a calculation can be found
in ref [9] where it was shown that this estimate agrees well with the results
obtained in numerical simulations.

Similar results have also been found in the models based on other
potentials™ . In all cases, at sufficiently high velocities (to overcome
all the repulsive forces), the elementary head-on collisions between two
solitons exibit the 90° scattering. At lower velocities, and in interactions
involving more solitons the scattering properties are more complicated.
For lack of space we will present the results of our investigations of these
cases elsewhere.

3. CP2 MODEL

To go beyond the formation of a ring, when the solitons are on top
of each other, we have to consider a model with a larger target manifold

space; the simplest such model is the C P? model. This model involves two

complex W fields (like the W field of the C P! model) and the Lagrangian
density is given by

0 WO + 0, Wa0F W + (Wi, Wa — Wad, Wi )(Wi0M Wy — Wadr Wi )*
(1 + [W1]? + W ]?)? ’
(9)

L

and the equations of motion are given by

2W} ((@Wl )2 — (9;W1)? — (6le)2)

FPw, =
t V1 1+ |W1|2 + |W2|2 (10)
o ((B:W1) (O Ws) — (0:W1)(8: Wa) ~ (8, W1)(0, W2)
+2W; ( 1+ [WL2 + W, P2 . L ) + 2w, + a;WIa

and a similar equation for Wy, obtained from (10) by the interchange
(1< 2).

It is easy to see that Wy = Az2, Wa = puz is a static solution of the
equations of motion and describes two solitons on top of each other (and
located at z = 0). For a general choice of the parameters A and u the
energy density of the configuration has a ring-like structure (like in the
CP! case); however, when the parameters y and A satisfy u? = v/2) the
energy density takes the shape of a single peak (i.e. the ring becomes a
peak). We can displace the solitons initially by choosing W1 = A(2% - a)
for some reasonable value of a, and then taking W as above with pu? =
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V2), set the two solitons moving towards each other by starting the
simulation off with % = aV, d_dV%z = 0. With such an initial value
problem the solitons are set to expand as well so that when they emerge
out of the interaction region they do not shrink too fast.

We have performed many simulations corresponding to different val-
ues of the the initial velocity V. All our simulations showed a 90° scat-
tering. Moreover, they also showed a shift along the trajectory as seen
initially in the CP! case. In fig2 we display typical trajectories of our
solitons and in fig3 a,b and ¢ we show the time dependence of the dis-
tance between the solitons for simulations started with three values of
V. We clearly see a shift along the trajectory which is similar to the
one observed in the CP! case except that this time the interpretation is
easier (our picture suggests that as the solitons are close together they
speed up and then come on top of each other where they spend some time
after which they separate and gradually, as they leave the interaction re-
gion, they regain their initial speed). Clearly this is only a qualitative
picture of their interaction; when they are close together they loose their
identity, and like in the (1+1) dimensional case, it makes little sense of
talking about their trajectories. Moreover, as is easy to check, the shift
along the trajectories does not depend on V (and in the case of the sim-
ulations shown in fig3. its value is 6 = 1, if we assume that the solitons
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In addition we would like to add that we have also looked at some
field configurations corresponding to one soliton and one antisoliton. As
the forces between them are attractive, placed some distance apart, soli-
tons and antisolitons move towards each other and then annihilate into
pure radiation. The angular dependence of the outgoing radiation is not
uniform; most of it is, again, sent at out at 90° to the direction of their

final approach (just before the annihilation). This has also been observed

. .o ) 5]
in some earlier simulations'” .
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Thus we see that our solitons in (2+1) dimensions behave very much
like real solitons. In the scattering processes they preserve their shape and
although some radiation effects are present these effects are always very
small. In conclusion, we see that the modified S? model, although non-
integrable, is almost integrable in that it has many features in common
with many integrable models. Most differences or deviations are rather
small. As most physically relevant models are not integrable our results
suggest that the results found in some integrable models should not be
dissmissed as not relevant; it is quite likely that some of these results
may also hold in models which, strictly speaking, are not integrable but
whose deviations from integrability are rather small.
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INTRODUCTION

The problem of the formation of spiral waves in two-dimensional excitabie media is
one of the classical problems of nonequilibrium pattern-forming system which remains
unsolved. It is clear now , from numerical simulations, that reaction diffusion sytems are a
good physical basis for the explanation of the formation and of the characteristics of the
spiral waves. However, the mathematical understanding of these solutions is far from being
complete. A first problem is to determine the characteristics of the steadily rotating spiral
wave , rotational frequency and radius of the unexcited circle lying at the center of the spiral.

A second problem is the stability of the spiral wave. In a range of control parameters, an
instability mode called meandering is found. Meandering of spiral waves is a significant
deviation of the spiral tip from circular trajectories and is now well confimed by experiments
[1],{2]. Meandering is also observed in numerical simulations of standard reaction-diffusion
models showing that the explanation of this fascinating behaviour must be found in the frame
of these reduced systems. Contrary to experiments transition to meandering is well defined.
It is a supercritical Hopf bifurcation [3].

In order to understand these phenomena, the simplest model from which one can
start consists of a set of two coupled reaction diffusion equations with two very different
time scales, one for the trigger variable ¢, which varies on the fast scale, the other for the
recovery variable ?‘ , on the slow scale. Numerical simulations of this model exhibit steadily
rotating fields , with a well determined frequency o, the region ‘where the gradient of ¢, is
sharp being located on a spiral shape. In order to understand these solutions and determine
the frequency of rotation of the spiral, one simplifies the model and assimilates the regions
where c; varies rapidly to a closed moving contour which delimits an excited region.
Outside this contour , in the refractory region , the slow recovery variable decays until the
occurence of another excitation. Moreover, aroud the center of rotation of the spiral lies an
unexcited region with a well determined radius r, [4],{5],[6].

In a first part we describe this simplified model and discuss how it can be determined
from the set of two coupled reaction-diffusion equations. In a second part, we study the
solutions of the model corresponding to steadily rotating spirals. We determine uniquely the
angular velocity  and the hole of radius 1y as a function of the control parameters of the
model, i.e. ¢ the ratio between fast reaction time and refractory time and 3 the excitability [6].
In a third part we discuss the stability of the spiral waves in a limiting case where a first
analysis can be performed [7].
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THE MODEL

The basis of W.F.M. is the classical piece-wise linear model for the following
reaction-diffusion system:

acl 2
E—a—t—=€ Ac;+f(cy,c2) 0))

%c—t2=c1 -5 @

where f (¢, , ;) is the piece-wise linear function drawn on Fig.1:

-01'02+1 y 0<Cl } (3)

flep cz)=< -¢;-cp -1 , ¢;<0

A c2

11 Excited Zone

Fixed Point L

Fig.1 Piecewise linear model.

and 3 a real and negative number larger than -1 which characterizes the excitability of the
system. Here, € = T/ T is the ratio between fast reaction time T and the refractory time T.

Time is scaled with T and lengths by the diffusive length (Dt)llz / € , where D is the
diffusive coefficient of the trigger variable c,. It is assumed here that only the trigger variable

can diffuse in the system.

It is well known that when € is small , the reaction-diffusion system admits one-
dimensional solutions corresponding to the propagation of a sequence of stable pulses. Each
pulse of the sequence is characterized by two waves ( the front and the back ) propagating
with the same velocity separated by an excited region. In each wave , the concentration of
the recovery variable ¢, can be assumed constant . The propagation velocity ¢ ( ¢, ) of the
wave can be found as a function of c, after integration of eqn.1 in a frame moving with
constant velocity ¢ ( ¢, ), in the new space variable &=(x-c(cy)t)/e Inthe case of the
piece-wise linear model (3), this velocity is found as
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2c
c(cy)=- 22 +0(¢e) “)

Vl'Cz

As introduced in Zykov [8] book p.5, an important quantity caracterizing the front is
the maximum relative rate of increase of ¢y , E ., / A =1(9c; / 0t ) I,/ A ,where A is the
amplitude of the wave. In the case of the simple piece-wise linear model defined above, this
quantity is found as | ¢, [/ €. Its inverse corresponds to the transit time of the wave. In the

case of the single pulse ¢; = - (1 + §), sothat E_,, / A=11+ 81/e .When the pulse is
1solated, the duration of the pulse ( transit time of the excited region ) is found as
D =- Log | 3 |. Experimentalists are more familiar with the quantitiesE_,, / A and D . The

model is defined with the two independant parameters € and 3. In the following we will use
alternatively these two kinds of parameters.

When the pulse propagates in an inhomogeneous field ¢, the equiconcentration
waves of the trigger variable ¢, become distorted and the normal velocity (4) of the waves

are modified by transverse concentration fluxes. It is well known that when the curvature
radius of the wave is large compared to its thickness, the normal velocity of the wave is
maodified proportionally to the curvature as

va=c(cy)-ex +O(E) (5)

where ¢ ( ¢, ) is determined by relation (4). We will now explain the model studied in the
paper. We call this model " Wave Front Interaction Model * (W.F.M.) since it describes the
motion of two fronts , the front and the back , which move with a normal velocity given by
relation (5).These two waves interact with a relaxational field ¢, which satisfies the equation

Fr o, r1-5 6)
ot

where the subscript + ( resp. - ) means that the relaxational field ¢, is calculated in the excited
region (resp. refractory region ). This last equation is simply deduced from relation (2) with
the additional relation ¢; = & 1 - ¢, which holds respectively in excited and refractory
regions. The common end point of the two curves must have a zero normal velocity. This
model appears as a free-boundary problem in the spirit of the one proposed by Fife [3] and
Tyson and Keener[4] , but simpler and thus more tractable since the diffusion coefficient of
the recovery variable is assumed here to be zero. It contains two control parameters , the
ratio between fast reaction time and refractory time € , a real positive number and the
excitability 5, a real negative number larger than -1. It is clear from the beginning that a first
validity condition of the model is that the two waves will be well separated, which imposes
that 0 < € << 1. Secondly, that the curvature radius of the wave is much larger than the
front thickness, which implies ¢ << 1. From relation {4), this condition can be satisfied if &
goes to -1.

STEADILY ROTATING SPIRALS

We look for solutions of W.F.M. corresponding to clockwise spirals rotating at
constant angular velocity @ , around a hole of radius ry. Consider a polar coordinate system
(1, 8 ) rotating with constant angular velocity w. Then , the shapes of the front and the back
,respectively O (r) and O (r) satisfy eqn.5 , i.e.
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or dr Vg
—_—— =tc(c -€ + : 7
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Here ,Wg g =rd@gy (r)/dr, the sign + (resp. - ) corresponds to the subscript F ( resp.
B). and ¢ ( ¢, ) is determined by relation (4 ). The two curves meet tangentially to the circle

of radius ry sothat Wg (1y ) =- Wy (rp ) = - e, or from eqn. (7) their curvature reaches
their critical value K, =c ( cyg 5 )/ €. At large distance from the tip, front and back behave as
phase-shifted Archimedean spirals, i.e. Og(r) = kr = Og(r) + constant, where k is a

positive number . In each part of the domain delimited by the curves, the concentration of the
recovery variable c, satisfies

ng:t
W—==-C93+1-3 (8)
do 2+

where the subscripts + and - are respectively associated to the excited and refractory regions.
On the front, ¢y, (O (1)) = ¢, (0 (1)) = cop and on the back, ¢, (Bg (1)) = ¢, (Bg (1))

" From Eqn.(8), one can deduce ¢,z andc,g as:

0,-0.-21
2(exp(—2—E"")-1)
cop=1-8+ “’2 ©
(1-exp-=2)
®

2n 0g-0
2 ( exp-=-exp (——2))
cop=1-38+ ® . ® 10)
(1-exp-=2)
w

Numerical Results

For the details of the resolution of the system composed by eqns. (7), (9),(10) see
the full paper by Pelcé and Sun [6]. For convenience we introduce the radial coordinate
scaled with the tip radius R =r Ky =rc/e.

Angular veloci | hole radi
Hole radius ry

The smaller is the ratio between fast reaction time and refractory time, the smaller is
the radius of the circle around which the spiral tip rotates at constant angular velocity Fig.2.
This curve diverges at the limiting value €, = 6.8. This means that solutions for steadily
rotating spirals exist only for values of € less than 6.8. For this particular value of d, large
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hole radii are found for values of € which are not small so that results obtained from W.F.M.
may differ from the one obtained from the complete reaction-diffusion system. On the other
hand solutions corresponding to small radii which are obtained for smalil values of € may be
in good agreement with the one obtained from complete simulations of the reaction-diffusion
system.

Angular velocity

Itis a decreasing function of € Fig.3.

To ®

Fig.2 Hole radius ry as a function Fig.3 Angular velocity o as a function
ofe(8=-0.1). ofe(8=-~0.1).
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The spiral shape

Spiral shapes are drawn on Fig.4 for Ry = 1. and Ry = 10. for the same value of the
excitability 6 = -.1.
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Fig.4 Shapes of spirals (§ =-.1 ): left Rg = 1. ; right Ry =10

Steadily rotating spirals in the diagram ( EM [A.D)

It is more convenient to draw the steady state curves for rotating spirals in the
diagram ( maximum relative rate of increase of the trigger variable c;, pulse duration D )
(Fig.7). This kind of diagram is well discussed in the Zykov book [8] and very useful as far
as tip meandering problem is posed in the cardiologist context. For this, we take different
values of € and 6 , determine the corresponding values of E_, /A and D and compute the
hole radius Ry, for these values in a similar way as what was s done in section II. a) . Then,
curves of equiradius are drawn in the diagram ( E_,, /A, D ) . As was found for the
approximate solutions of Zykov [8], for a fixed hole radxus, the maximum relative rate of
increase of the trigger variable ¢, decreases when the pulse duration D increases. On this
diagram, we draw the "validity line" of W.F.M. which limits the region where 0 <€ < .5.
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Fig.7 Steady state rotating spirals in the (B, / A, D) diagram. The dashed
lines limits the region where 0 <€ < .5.
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FIRST APPROACH FOR A LINEAR STABILITY ANALYSIS.

Before to perform the whole linear stability analysis involving
perturbations of the two waves, it is more convenient to analyse a simpler situation

[7]. It was observed from the analysis of the steady states that for an excitability &
slightly larger than a minimum value 8;, ( € ) the radius of the central unexcited

region ( hole radius ) is very large [8],[9]. Below this value spiral wave retracts and
no steady rotation is possible. When the spiral tip rotates on a trajectory of large
curvature radius, the time between two consecutive excitations is very large and the
refractory fiels has time to come back to its steady value. Thus the front can be

considered as moving in an unexcited medium at equilibrium, It is shown [8] that in
this case, the structure of the wave is that of a pulse moving with a well determined
normal velocity ¢ terminating on a free end with zero normal velocity and constant
tangential velocity c. It is known from experiments and numerical simulations that in
this case, the uniform spiral rotation is stable. Even in this simple situation it is not
evident to explain the reason for this stability. If at large distance from the tip it
appears clear that perturbations of the spiral shape must be smoothed out because of
the stabilizing effect of the curvature on the normal velocity, it is not so clear why , if
the tip penetrates in the unexcited region ( Fig.8 ), it is repelled towards the steady tip
trajectory.

Thus, we perform a linear stability analysis of the uniform steady rotation
of an opened curve moving with a normal velocity linear function of the curvature and
with a free end moving with zero normal velocity and constant tangential velocity c.
As expected, we show that this uniform rotation is stable , i.e., all the eigenvalues of
the stability spectrum are negative ( Fig.9 ). Furthermore, as it is often the case for
linear stability problems in semi-infinite space, this spectrum is found to be discrete.

Growth Raye
E & &
L
'

M (r+69+8) .08 -

Mode Number

Fig.8: Sketch of a perturbation of the steadily Fig.9: Spectum of growth rates
rotating spiral.
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ABSTRACT. We study the surface perturbation of a viscous fluid adequately
heated from below. We shown that under appropriate perturbations to the static
solution the system exhibit oscillatory instabilities governed by the Kadomtsev-
-Petviashvili equation or by the (2+1) dimensional Burgers equation.

I. INTRODUCTION

The system formed by a fluid heated from below, the so called Bénard pro-
blem, has been along the years a standard model for many studies in fluid
dynamics 1. In most cases, however, the main interest has been concentrated in
convection phenomena. While considering the same system, our concern here will
be quite different since we shall be interested in the study of surface waves
and in situations for which the Rayleigh number R is well below that determined
by the onset of convection. Furthermore, we shall only consider systems for
which the upper boundary is a two-dimensional surface. Yet, we shall restrict
ourselves to the study of long surface waves, on whose description the slow
variables play a very important role. By using appropriated slow space and time
variables we shown that nearly one-dimensional undamped waves, described by the
Kadomtsev-PetviashviliZ equation, may propagate in a shallow viscous fluid, pro-
vided the Rayleigh number of the system satisfy the condition R = 30. This
extend the result obtained by Alfaro and Depassier3, in (1+1) dimensions.
Furthermore, it will be shown that changing appropriately the perturbation

scaling and the slow variables, the evolution equation governing the surface
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4

displacement is the (2+1)-dimensional Burgers” equations provided the Rayleigh

number satisfy the condition R # 30,

II. THE SYSTEM

Let us consider a Bénard system consisting of a fluid bounded below by a
plane stress-free perfect thermally conducting medium at z=0 and temperature
T = T, and above by a free surface which, at rest, lies at z=d. The depth d is
such that the buoyancy effect 1is predominant when compared to the influence of
the surface tension. This is the reason we assume a vanishing surface tension.
The equations governing the hydrodynamical flow of a viscous fluid can be simpli-
fied considerably by wusing the Boussinesq approximation. The origin of this
simplification 1is the smallness of the coefficient of thermal expansion Y. As
for mostly situations of practical occurence 7Y is indeed small, ranging usually
from 107 3to 1074 , this approximation does not impose severe restrictions from
the physical point of view. In this approximation, the equations describing the
motion of a fluid are given by

Vi=0 L
PR AR AT (2)
0 I n ge

dT 2
-dT-K'.VT (3)
p = pgll - ¥(T-Ty)] (4)

where d/dt = 9/0t + V.V is the convective derivative, V- (u,v,w) is the fluid
velocity, and p 1is the pressure. The viscosity p, thermal diffusivity K, and
coefficient of thermal expansion 7, are constant.Tjy and pg are a reference tem-
perature and density, respectively.

On the upper free surface z= d+v(x,y,t) the boundary conditions are5
T‘t+unx+v'ny~w (5)
(P-Pa)myg b (2 wgmy - (ugptwy) + (uptvy) my) = 0 (6)
PPy t B {((wy +u)dm, - 2w, + (wy+vz)ny) = 0 (7)

(P-Pa)ny - 1 ((vx+uy)nx - (vgtwy) + 2vymy ) = 0 (8)
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and

(9)

=]

Sl

[}

1]
=|m™

where n is the unit vector normal to the free surface, given by

n o= (-ny, -ny, /N N = (1 + 92+ nf,)l/z,
F is the normal heat flux, k is the thermal conductivity, and p,; is a constant
pressure exerted on the upper free surface.

An important point 1is the dynamical boundary condition to be satisfied at
the lower plane. We suppose that the sliding resistance between two portions of
the fluid is much greater than between the fluid and the plane6. Under this con-

dition, it is reasonable to assume a stress-free lower surface, which implies1

W= vy = vy =0 (10)
for z = 0.

The static solution to these equations depends only on the coordinate z and
is given by

F YF
Tg = Tg - E (z-d) , Ps = Po 1+ —12- (z-d)
YF
Pg = Psz -~ 8 P [(z-d) * e (z-d)z] .

In order to get the dimensionless form of the equations, boundary conditions and
static solutions, we adopt d as unit of length, dz/K as unit of time, pod3 as
unit of mass, ant Fd/k as unit of temperature. Furthermore, we introduce three
dimensionless parameters : the Prandtl number o = p/poK , the Rayleigh number
R = pogYFdA/ka and the Galileo number G = gd3 p%/uz.

III. THE KADOMTSEV-PETVIASHVILI EQUATION

In order to obtain the Kadomtsev-Petviashvili (KP) equation we need
introduce the following slow variables

E=¢ (x - ct) ,
L =€y
T =€t ,

with € a small parameter, chosen so that the amplitude v of the surface pertur-
bations is 0(€2)



261

n= ez(no + €ny + €2ﬂ2 + ...)
Introducing now the expansions

u = €2 (uo + €u; + €2u2 +...) )

v =3 (VO + evy + €2v2 + ...) )

W o= 636W0 + €wy + €2w2 +...) )

P-P = PO +€ P+ 62 Po +... ,
T-Ty = 00 + € 01 + 6292 +... |,

where all quantities are dimensionless, we can obtain an order by order solution
to the equations (1)-(10). In order Y

, the solution is given by
g =Py =0
In order €l it is
81 =P =0 , mp=£fEZT)/c ,
ug = f(&,z,m, wg = -Z f(&,g, 7 ,
with £(§,%,T) an arbitrary function. In order €? we find
03 =0 , Py=0%Gmy , m = g&,L, /e ,
u = g(&,5,m , Vo =1x(E,g,1) ,
wp = -z ge(B, 1)

with g(&,5,7) and r(§,f,T) arbitrary functions. At this order, the solubility
condition implies

2 ~0o?¢
In the next order the solution is given by
1

03 = = fg (23 - 32) ,

1
P3-2—40Rf,_;(z4- 62245) - 20 £z + o> Gmy ,
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1
up = == £gg (2% - 15 2% +392%) + hELT)

vy, = S(EvaT) ’

1
R feee(z’ - 21 2° + 91 23) - z(hg + )

with h(§,£,7) and s(§,f,7) arbitrary functions. The solubility condition in this
order determines the critical Rayleigh number R, =~ 30. On the other hand, the
boundary conditions yield now two relations among the arbitrary functions
f(&,z,7), h(E,g,7) and r(E,;,T)

71
2
Cha - C (ﬂz)a = - f‘l’ -2 ffa - m cfaaa - crc , (11)

g ~ fC . (12)

Finally, in order e* the expression for 6,, P, and the boundary conditions,
ylelds the relation

30 + oG 2720-15

2
cha - C ('r'|2)E - f,.r + —;G— ffa + _]H— cfaaa . (13)

The requirement of compatibility of eqs. (11)-(13) provides an evolution
equations for the function £(&,f,T)
£ 3(10 + oG) £ 17 1 £ 1
T+——_—20G E+CHO'+'6- EEEE_-ECfCC

By transforming the variables as

e Al g _ (c/\]l/Z . 4Go c
— —_ —_— o —
» & 6 & (10+GHA =

with

Al o]

we get
(£ - 6 £fg + fggg), + 3 £, = 0 . (14)

which is the KP equation7.

The solitary-wave solution of (14) is given by8
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£(E,5,7) = A sechz{[%(m-t) E - %(mz-ﬂz)(G/ﬁc)l/zg - 2(m3-£3) T/A]A~B} (15)

1 m
with m and £ real numbers, g = E—Bn [- ZJ, and

A 2Go ( 2)2
ACL0 + Ga)
If £ # -m, eq. (15) represents an oblique solitary wave which moves at a certain
angle to the E-axis and does not decrease along the direction defined by the

equation
£ = (£+m)(6/Ac)1/2

as E,  ~— o0, If, however, £ = -m, the solution (15) is converted into the
Korteweg-de Vries soliton. In this way we see that, the solitary-wave solution
of the KP equation describes a wave whose pattern consists of a horizontal
streamline. These solitary waves, associated with oscillatory instabilities, are
sustained by the adverse temperature gradient applied and just come into play
because the amount of energy released by buoyancy exactly compensates the amount
dissipated by viscosity.

IV. THE (2+1)-DIMENSIONAL BURGERS EQUATION

Here, we shall obtain a non-linear evolution of the surface displacement
governed by the (2+1)-dimensional Burgers equation. To this end let us consider
surface perturbation and slow variables given by

n =€ ("10+€"11+€2"12) ,
E=¢(x - ct) ,

5 =32y

2

T =€ €

Furthermore, we introduce the expansions

2

u=€(u0+€u1+€ U2+...) N

2

V'=€3/2(V0+€V1+€ V2+...) ,

W=€2(W0+€W1+€2W2 +) ,

2

P-PS =Pg+€e P +€°Py)+... ,
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T-Tg = 0g + € 87 + e? 0y +...
In the lowest order, the solution of equation (1)-(10) is given by
00—0 , Pg=0 , uo-f(E,C,T) )
wo =~ -z fg(8,5,7) ,
with £(§,5,T) an arbitrary function. In the next order it is

1
Mo = = £ ’ Vo - h(E1C1T) ’

[
01 =0 , Pl-‘ Go 21]0 ,
u = g(&,5,7) , wp = -z(gg + hy)

with g(&,5,7) and h(§,5,7) arbitrary functions.
In the order €2 we get

Ro

Ro
o (z%- 62%45) - 20|fg + - n§ + GoZ my.

8, -%fa(z3 - 3z) , Py =
The boundary condition on the upper free surface yield the equation
cznla-cga-f7+sza+ch,; ) (16)
At this order, there appear a solubility condition giving

c2 = Go2

In the next order the expressions for 05, P3 and the remaining boundary condi-
tion yield the equation

R 2R
- C2 ng + cgg = f.r + [1 + E(;] ffE - a [1& - E] fEE’ (17)

as well as a relation between the arbitrary functions f(&,f,7) and h(&,g,T)
fC =hg . (18)

The requirement of compatibility of Eqs (16) (17) and (18) provides an evolution
equation for f :

[ 3Go+R ] c
f.r + 2Go ffE + v fEE = - .Z—fl;l; ,

where
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2 Ro
V=20 - —
15

By transforming f according to

2Go
—
3Go+R

we obtain the equation

(£, + £ v fgg)_ = - 5

7 fuz (19)

This is the (2+1)-dimensional Burgers equation. The complete integrability of
(19) 1is currently under investigationg. Eq (19) has a progressive wave solution
of the form

f(A) = £f(f6& + B, - Cr) ,

whose explicit form is

) 2
£ = (3Ga+R) (2C- cB%) {1 [( 2C- clB%) A /\o)]}

4Go

where @M,B,C are constants depending on the initial condition. It represents a
nearly one-dimensional Burgers shock wave. This shock wave is propagated without
any overtaking and it is substained by the adverse temperature gradient provided
the Rayleigh number of the system satisfy the condition R % 30. As the Rayleigh
number approaches the point R = 30, the coefficient v approaches to zero, nonli-
nearity is not compensated by dissipation and the wave begins to break.

It should be noticed, however, that this solution is not valid for an arbitrary
large R, since 'in this region other phenomena which are not considered by our
approach, may take place.

V. CONCLUSIONS

We have extended a (2+1) dimensions the result that a solitary wave may pro-
pagate in a viscous fluid subject to an adverse temperature gradient. We found
that the surface displacement obey the Kadomtsev-Petviashvili equation.

On the other hand we shown that a much larger surface perturbation will be
governed by the (2+1) dimensional Burgers equation. We predict the existence of
a nearly one dimensional kink, provides the Rayleigh number satisfy the condi-
tion R = 30.
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NON-LINEARITY AND COHERENCE IN MODELS OF SUPERCONDUCTIVITY

J.M. Dixon
Department of Physics, University of Warwick
Coventry, CV4 7AL, U.K.

and
J. A. Tuszyn ski

Department of Physics, University of Alberta
Edmonton, Alberta, T6G 2J1, Canada

Theoretical investigations of standard low-temperature superconductivity
frequently proceed in one of two main ways. The first begins with the well-known
BCS Hamiltonian which may be written as

t t ot
HBCS = % @y a ao+ D, Ak gmdd Anotiudno - ¢
ko k&m
a,0'

In equation (1) the one-body part of the Hamiltonian is assumed diagonal in the
plane-wave basis, each vector being labelled by a wave-vector k, £ or m. The two-
body term is assumed to be attractive in nature, the vectors on annihilators and
creators being arranged to conserve linear momentum. The labels 0 and o' denote
the components of spin, the total spin on each particle being S = 1/2. One standard
approach is to use Bogoliubov-Valatin transformations [1] to diagonalise HBCS, so
that the effective one-body term exhibits explicitly a gap representing the minimum
energy required to create an excitation in the system. Both this transformation and
subsequent approximations are guided by the knowledge, obtained originally
variationally [2], that in the ground state electrons are formed into Cooper pairs
with their wavevectors and spin components equal and opposite.

The second approach is to take a Landau-Ginzburg (LG) view and write down
a free energy density expansion [3] in the form

2
Gs =n@ + AM WGP + L Ay +Eowal | @

where A(T) = a (T-T¢), a being a constant and T-T. denoting the temperature
difference from the critical temperature T=T,. Here, Y (r) is the order parameter
and |y(r) |2 measures the density of superconducting electron pairs and hence the
local degree of superconductivity. Gy(r) is the free energy density of the normal
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state, m* is an effective mass and C a parameter which is assumed to be such that
C>0. At this stage, despite the work of Gor'kov [4], this route is usually
considered to be phenomenological but at the time this was put forward it
constituted a break through in the understanding of critical phenomena [5]. Thus,
the first approach uses a number of approximations to incorporate Cooper pairs and
an energy gap and the second appears to be phenomenological. However, the
present authors [6] have recently developed a novel approach, initially without spin

components, using the Hamiltonian

1 tt
Hrp=2, 0eq,dg+ 2, AgLmly dp dndiebrm - 3)
k& kfm

The idea was to first write down Heisenberg's equations of motion for the
annihilators and creators in equation (3). One notices immediately that these rate
equations have the same form whether the qq or (qu)'s describe Bosons or

Fermions. The next step is to define a quantum field by

yo = Y ekrg @)
k

and to rewrite the equations of motion in terms of this field alone. This latter part
of the procedure is not easy because the parameters or matrix elements in (3) are
functions of the subscripted wave-vectors. However, if these elements are
expanded as a series about some suitable point in k-space then clearly the equations
of motion may be written in terms of Yy, y* and their gradients. In general, there
will be an infinite number of terms as a consequence of this procedure. If the point
in k-space is chosen as a critical point of the system, then it is well known [7] that
close to this point the order parameter ¥y will be predominantly classical,
corrections being very small and of order f. It is then only necessary to perform
the expansion in k-space up to second order because Renormalisation Group
Theory tells us that we only need to include terms up to Y™ in the Hamiltonian, in
N-dimensional space time [8], where n = 2N/(N-2) = 4 — or terms in y3 or its
equivalent in the equations of motion. Thus, the form of the second order
equations is virtually exact and higher order terms merely redress those in lower
orders. This general equation of motion takes the highly non-linear form [6]

iho =Aoy +ika- (Vy) -1 3 Qo) dw +vau vy
o

+ O [i (Vaho ¥ WYY +i (Vo ¥ (VU)W — i (Viddo- (V¥ D]
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2 .
+L3 Ommbo (¥ [~ dam¥ 21 G¥) m§ + ymfm] y
I

+yty [ 0k — 2 @y) 1+ NTNSWY + 2yt [Go,¥ - nRY) (oY - YD) ()

What is perhaps so surprising is that, if Htp is itself written in terms of the field y
a standard Landau-Ginzburg form is retrieved. Furthermore, terms in y(VyT),
(V2yhyy, (v2yHytyy and (VyH)(Vyhyy, which were actually considered and
investigated by Landau, also appear! The equations of motion for ¥ turn out to be
the Euler-Lagrange equations obtained by finding the extrema, relative to y*, of
the Hamiltonian functional, equation (3) being considered as a Hamiltonian density
when written in terms of the classical field.

What, therefore, is so significant is that in the first approach above it is not
necessary to make approximations; we can retain the full generality of the second
quantised form and the second approach is not phenomenological at all but a work
of true genius.

So far this new approach has not incorporated spin at all. At this stage this

will be omitted and to focus attention on standard low temperature superconductors
we put
h K>
Wt = (21’1'1* - Ep) 5&-?_/ ’ (5a)

and assume

Agem =-Vodg (5b)

as is customarily done in BCS-type theories. In equation (5) Ep is the Fermi
energy, Vo is a constant energy and the symbol 8g is zero unless the kinetic
energies are within ’ﬁwD (where wp, is the Debye angular frequency). Using
standard methods in quantum field theory [7], near the critical point we describe
the field ¥ by

¥y =60 + A
where ¢ is a large classical envelope and A is the smaller quantum component and,

as a first approximation in the equations of motion, drop the quantum component
A. In zeroth order the equations of motion reduce to

2 *
ihod = ~Ero+50v79-20Ve0 00 ®
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which is a non-linear Schrodinger equation in three-dimensional space. This
equation is integrable in 1+1 dimensions, as is well known, and among its
solutions are stable solitons. It has also been studied in depth using the Symmetry
Reduction method [8]. Analytical results appear to be only found when the level
surfaces of the symmetry variable § correspond to planar, cylindrical and spherical
manifolds. Asymptotic behaviour for some of these geometries corresponds to
solutions of the quasi-linear equation and for this reason we confine our attention
to these. Writing the classical field ¢ as

0 = exp (+i%) exp @) @

substituting into (6), and separating real and imaginary parts results in

2 2
An +Cn3-2fr‘n* v +2 h*n3 d=0 ®)
m

where A = Efp — E, C =20V, and C; defines the magnitude of the superconducting
current, js.

When there are no currents, corresponding to the case when Cy1=0, there are
two main categories of solution to consider. Firstly, when m*>0 the lowest exact
solution is a mean field and if A>0 this describes the normal state whereas if A<0O
we obtain the ordered superconducting state. In the case when A<O, just below the
energy of the normal phase, one finds, with this approach, a discrete ladder of
one-, two- etc. up to N-soliton states. If one assumes that the physical situation
may be described by a nearly free soliton gas, then one can show that the N-soliton
condensate is separated from the normal phase by a gap A. If, as is the case in the

LG picture, the constant A is temperature dependent through the usual relation

A =73 (T-T¢) , %
then we find that the gap scales with temperature as

A ~ (T-Tgl2 , (10)

exactly as it does for standard low temperature superconductors! In fact, between
the mean field energy and disordered phase one finds a continuum of snoidal and
dnoidal (of the Jacobi elliptic type) waves, the latter representing
thermodynamically stable fluctuations. As the temperature approaches the critical
point from above the normal phase becomes destabilised so that for T<T; soliton
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energy levels become available to the system and dnoidal waves execute small
oscillations about the mean superconducting energy.

Still describing the situation when m*>0, but when rconducting currents
js # 0 are present, we may still solve the non-linear equation of motion exactly and
above T all the solutions become unstable. However, below T, js breaks the
topological solitons (or kinks) into pairs of bumps and the elliptic solutions
become distorted. At a critical value of the current jc both elliptic waves and bump
solitons below them disappear and the superconducting state is destroyed.
Remarkably, this critical condition enables us to deduce the correct scaling of the

current with temperature as
js~ 1 T-Tc132 . (11)
This is again as in standard superconductors [3].

The other main case is when m*<0. This may arise due to band structure
effects, re-dressing from higher order terms but in any case can happen if transport
is by holes in an approximately two-dimensional system [9] as is the situation for
high-temperature superconductivity. This situation is very different from that for
m*>0 and results in a ground state which is strongly modulated in space (cn-
waves) and has a critical current whose square has a cubic dependences on T-T¢

[10].

All the results above are consequences of the model in the absence of spin so
it is legitimate to ask what difference its inclusion would produce. Following a
similar procedure as outlined above, the starting point would be the analogue of
equation (3) with spin components introduced, namely

t tt
H; = zé W e %o + &2" Ag ,&.mq@%'%oq(b&—mo . (12)
k. klo'o

o}

In equation (12) we have assumed for simplicity that the one- and two-body
operators from which @ and A arise do not depend on spin. The labels g, ¢' refer

to the components of spin, not necessarily for a spin $=1/2, and qk¢ or (q]:o)'s can
refer to either Bosons or Fermions at this stage. If we take the case where the
spins do refer to electrons, as an example, and denote spin components ¢ = +1/2
by '+ and ¢ = -1/2 by '~', then the Heisenberg equation of motion for qy+ is
given by
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. t t
lﬁatq“+ = Z (’)n_.k i+ + Z {AIL k mqk_+‘lm+(l(n+5—@+ - A 1 m9y, I+ -m+
k km B

t t
+ AIL k mqk_%-q(n+l§@+ - Ag n mqkﬂm-fl(;m-m)d s (13)

with a corresponding equation for if3,qy., obtained from (13) by interchanging '+

and '-'. These latter two equations may now be replaced by field equations

involving, in this simple example, two spin-dependent fields defined by

v =0y eikrg, , yo= o'y eikrg, (14)
k k

using a similar procedure to that in the spinless field case. The field equation for
¥+ may be obtained by making the following replacement in equation (5)

) ge—VYo

b)  kxQuo—9x,¥o (15)
1 1 1.1 1,1

C) YWYV WY+ ‘2-‘11. Y.Vy. + E‘V. Yy,
tra2 .2 1., tra2 1 o 1ra2

d) ¥ PxgW V-V, PxV ]y + 2 V. [xW Y+ > V. x4y

and similar replacements by permutation of co-ordinates. An equation for the y.
field may also be obtained in this way but with '+' replaced by '-' in ¢) and d) of
(15) and vice versa. A full calculation will confirm the relationships in (15). What
one notices on writing down these equations of motion is that those terms which
couple the Y, and y. fields together may all be written in terms of brackets of the

form
(VW + eyl . (16)

However, these all vanish due to the commutation relations for the quantum fields!
Hence the equation of motion for ¥4 becomes identical in form to the spinless case,
with y, replaced by y. In a similar way the equation for . is also, on putting
y.— ¥, exactly the same as in the spinless case. Hence, for Bosons with spin S=0
and Fermions with S=1/2 the equations of motion are of the same form, despite the
fact that they apparently contain very complicated couplings between the spin
component fields!
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Even when the spin is greater than one-half for Fermions, a very similar
argument, when the one-body and two-body terms involve sums over Sspin
components, may be used to show that, for Fermions, for any total spin, the
equation of motion for a field associated with one component of the spin is
identical to that for any other component and has the same form as in the spinless
case. This does take rather a lot of tedious algebra but is a remarkable result. The
Boson case for S#0, is a little more complicated but in this, although the equation
of motion for any spin component has the same form, itis not identical to the
spinless case and the two-body interaction terms become scaled by the spin
degeneracy, 2S+1. Thus, this result might lead to higher critical temperatures if
the mechanism for superconductivity involved quasi-particles with a larger
effective spin. In this connection we remark that the transition temperature for 4He
is much higher than in 3He, provided we compare the two under the same
conditions of pressure so this would agree with our deliberation above [11].

What we have presented in this paper is a nonlinear field-theoretic approach
to superconductivity which is applicable to situations where a single phase exists.
Depending on the case we may obtain a normal phase, a homogeneous
superconducting phase, or indeed a host of modulated superconducting phases with
periodically distributed regions of high and low concentration of superconducting
charge. The regions with low concentrations of charge density will be easily
penetrable by magnetic flux lines and may result in the formation of a flux lattice.
Thus, this type of description appears fairly suitable for both type I and type II
superconductors. However, in the case of the new ceramic type of superconductor
the spatial ordering may be somewhat more complicated and the role of defects,
twin boundaries and structural disorder should not be underestimated. Admittedly
then, the model we have presented in this work would only be suitable for a single
grain and interactions between the neighbouring domains of superconductivity
would have to be modelled independently through the inclusion of Lawrence-
Doniach terms, for example. We have made a first step in the direction of
extending the present approach to embrace ceramic superconductors [12].
Interesting phenomena appear to be already incorporated, for instance the
associated vortex arrays form from the order parameter phases of the domains and
may or may not be commensurate with the structure of the island or domain
envelopes. This may explain the experimentally observed glassy features of these
materials [13].
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CHAOTIC POLARONIC and BIPOLARONIC STATES IN COUPLED
ELECTRON-PHONON SYSTEMS

Serge AUBRY, Gilles ABRAMOVICI and Jean-Luc RAIMBAULT
Laboratoire Léon Brillouin! , CEN Saclay -91191-Gif-Sur Yvette Cédex (France)

For large electron-phonon coupling, many models describing the electron-phonon
coupling have a limit called anti-integrable with trivially chaotic states. For example, let
us consider the Holstein Hamiltonian which is the sum of three terms which are

1- Hy is an electronic Hamiltonian
(1-b) He= -T Z et oc.
i,0 “j,o
<i,j>, ©

which corresponds to a band of electrons (described with standard Fermion

operators Ci+0' and c; G) propagating on an arbitrary lattice I periodic or not (<i,j>

denotes neighboring sites and ¢ the spin of the electron which can be Tord)

2- Hp is the phonon Hamiltonian

(1-c) Hp =z mwo(a“‘iai+1§)
i

which corresponds to Einstein oscillators with frequency g at the sites i of the

lattice I (a'; and a; are standard Boson operators) and

3- Hep is the electron-phonon coupling Hamiltonian

(1-d) Hep = & D, n; (2% + a;)
i

1 Laboratoire commun CEA-CNRS
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where
(1-e) ny =ch et + offjeyy

It couples the electronic density operator n; at site i with the oscillator position

Choosing for this operator (in appropriate units) as

oy
4g (an+an)

(2-a) up =

and its conjugate momentum

2 .
(2-b) Pn = ?1—(55 i (a-;-an)
and choosing
2
38"
(2-c) Eg =
haog
as the unit of energy, this Hamiltonian H becomes the sum of three terms
H
3- fi= 5 = Har+ tHg + BH
(3-a) Ep = HAI K+ BHQ
where
1 2
(3-b) HAar= 5 (ui +nj ui)
i
o ome-) Y
(3-¢) K=- 3 %,0%,0
<i,j>, ©

I

i
This Hamiltonian contains two dimensionless parameters which are



279

T hog
(4‘3) t = 4 g2 >0
and
(4-b) B= 2 ( e )4 respectively.

This new formulation of the initial Hamiltonian is specially interesting for making
appearent two important physical limits which are the (standard) adiabatic limit and the
anti-integrable limit. Up to now, the importance of this second limit for understanding
the physical behavior of the model, was not recognized in the litterature although it has
been already considered implicitly but unperfectly in few articles.

Adiabatic Limit: The standard adiabatic limit is obtained when 3 is zero. This
approximation is valid when

(5-a) g >> Rog

that is for large enough electron coupling g. In that case, the effect of the quantum
lattice fluctuations is negligible. At the adiabatic limit, the problem becomes variational
since operator uj commutes with the Hamiltonian and can be considered as a scalar uj =

<uj>. Note that the adiabatic Hamiltonian obtained for =0, is equivalent to the standard
meanfield Hamiltonian which is the selfconsistent Hamiltonian obtained by replacing
operator ujnj by uj<ni> + <uj> nj - <ui><nj> = yj nj + yj nj - yj nj in (3-b). This
approximation neglects the fluctuation (uj -uj)(nj- nj) which becomes zero only when

B=0.

For the adiabatic Hamiltonian, the eigenstates are characterized by the atomic
configurations {uj} which are obtained as local minima of the variational form

12
(5-b) o({ug}) = 3, oy Ey({un)) + E 5 U]
v
i
where Ey({up})) are the eigenenergies of the tight-binding Schroedinger equation

(6-a) -t @¥Y),+ un ¥) =Ey({ui) ¥y
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( (Z‘I’)n= Y Wm is the sum over the neighboring sites m to n on the lattice
m7h

denoted m7h).This eigenequation also determines the electronic eigenstates {‘Pr\;} for the
atomic configuration {up}. oy is the population number of state v. We have

1
(6-b) GV=<CVTT CV,T>+<CVT~L eyl > =0,10r§

It can be chosen according to the standard Fermi rule

(7-a) oy=1 for Ey({un}) <ER
and
(7-b) oy=0 for Ey({up}) > Ep

when the electrons are in the ground-state determined by the lattice potential. We
also consider situations where the electrons are in excited states as in polaronic or mixed
polaronic-bipolaronic states.

Anti-Integrable Limit: When considering large electron-phonon coupling g, the
relevant limit is obtained for t=0 (and =0). This condition is fulfilled when

(8-a) g>>+T hoo

the model becomes trivially soluble since the Hamiltonian H (or ﬁ ) commutes with
the electronic density operators cﬁ ¢;? and C;l c;| for spins T and {. For any
arbitrary pseudo-spin configurations { ciT} and {o; i} with

(8-b) o1 = Oorl and o;l = Oorl

there exists an eigenstate of the "anti-integrable” Hamiltonian such that

(8-¢) <cﬁ~ 1> =057 and <Ci-icil> =0,
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These eigenstates are periodic, quasi-periodic, chaotic or else as the pseudo-spin
configurations {o;1} and {o; |} which label it. By analogy with dynamical systems

where the anti-integrable limit is a limit where the chaotic behavior is perfect, we called

this limit anti-integrable[l’z].

For t=0, when a single electron is present at site i, there exists a lattice distortion at
this site. The electron associated with the lattice distortion is called a polaron. This object
is magnetic because of the free spin of the electron. When two electrons with opposite
spins are present at site i, this pair of electrons associated with the corresponding lattice
distortion is called a bipolaron. This object is non magnetic.

Thus, the eigenstates determined by pseudospin configurations fulfilling
{GiT}={Gii} are bipolaronic configurations. Those where o;1 X 0] = 0O for all i, are
polaronic configurations. In the general case, the eigenstates determined by {c;1} and

{o;] } are mixed polaronic-bipolaronic configurations.

We have proven through tedious mathematicsB], that these chaotic polaronic and
bipolaronic states obtained trivially for t=0, survives to perturbations in t, that is for
large enough electron-phonon coupling. This proof holds very generally for most
arbitrary lattices which could be random or not (except for exponential lattices such as
Bethe lattices), also in the presence of an arbirary uniform magnetic field (not
represented in the model described here).

More precisely, for each eigenstate \P({ciT}’{ciJ«}) at the anti-integrable limit,

there exists a positive non zero number tc (independant of the system size) such that for
Itl < tc, there exists an eigenstates \P({GiT}’{Gii}’ t) of the adiabatic Holstein model

(with t20 and B=0) which depends uniformly continuously on the parameter t and such
that for t=0, we have \P({GiT}’{Gii}’o) = \P({ciT}’{cii})‘This exact result means that

for large enough electron-phonon coupling, there exists infinitely many local minima of
the adiabatic energy.

Since they originate by continuity from the anti-integrable limit, these states are
also called bipolaronic, polaronic or mixed polaronic-bipolaronic structures. However,
note that these polarons and bipolarons become interacting "particles” for t20

For larger t, (that is for smaller electron-phonon coupling), these structures
disappear through complex cascade of bifurcations qualitatively similar to those
observed for dynamical systems.
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The real bounds which can be observed numerically for t¢ are much larger than the
bounds obtained rigorously. Although these last bounds were found independent of the
pseudo-spin configuration, the real bound in t of these configurations depends on the
choice of the pseudo-spin configurations {GiT} and {Gii}‘ In fact the dimensionless
parameter t; ranges not very far from unity which proves for many systems the physical
relevance of the domain of existence for these polaronic and bipolaronic states.

Many other exact results concerning the properties of these states are obtained. All
these structures are proven to be insulating with both a non vanishing electronic gap and
a non-vanishing phonon gap. These structures are "charge defectible” which means that
non uniform distribution of the electronic charges are metastable as in true insulators
unlike metals and semi-conductors. The local perturbations due for example to
impurities or to extra-electrons decay exponentially at long distance.

For large enough t, the ground-state of the adiabatic Holstein model, is proven to
correspond to an ordered bipolaronic structure which may be commensurate,
incommensurate (or else?) and thus is a bipolaronic charge density wave. It is
characterized by a periodic, quasi-periodic (or else) ordering of the pseudo-spin
configuration {GiT} = {Gii}‘ Therefore, the other bipolaronic and mixed polaronic-

bipolaronic structures correspond to low energy configurational excitations of this
ordered ground-state. Again, this exact result holds at any dimension and for most
lattices.

For small magnetic field, the ground-state remains a bipolaronic structure but for a
large enough magnetic field, the ground-state is proven to become a mixed polaronic-
bipolaronic state which is magnetic, through complex and unexplored cascades of
transitions.

The role of the dimensionless parameter B describing the quantum lattice
fluctuations which is not strictly zero but small, has been analysed[5 ]. It has been shown
that their effect are negligible for the polaronic and bipolaronic structures providing
that the phonon gap remains large enough. By contrast, it has been proven[5 “d] that the
existence of a gapless phonon mode (e.g. phason), breaks down the validity of the Born-
Oppenheimer approximation on which the standard theory of Charge Density Waves
(CDW) is based. In that case, superconductivity is conjectured. As a result, all CDW's
should be viewed as Bipolaronic CDW's, that is an incommensurate ordering of
bipolarons. The physical consequences of this description sharply differ on many points
from those of the widely admitted standard Peierls-Frohlich theory of CDW[6] and
could provide a new fruitful basis for understanding many experiments in CDW systems

which up to now received inconsistent theoretical interpretations[7].
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In summary, this work confirms and extends early numerical studies and
conjectures on the Peierls instability in this model in one dimension model where a
transition by "breaking of analyticity" toward a bipolaronic CDW was already

observed . This recently obtained exact result should break down some wrong ideas
concerning the effects of large electron-phonon coupling which are widely spread in the
litterature. It opens a new direction for understanding globally the properties of Charge
Density Waves Systems and perhaps in further stages, other structural problems
concerning for example magnetic structures.
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Chaotic motion of solitons in the PDE model of long Josephson junctions
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The Josephson junction [1] is an extremely interesting solid-state device both for
applied physics and non-linear physics. It consists simply of a sandwich of two supercon-
ductive films separated by a thin layer, generally of few A, of an insulator. Depending
on the thickness of the insulator the ’macroscopic’ wave functions of the two supercon-~
ductors overlap in the insulator region leading to a coupling that constitutes the essence
of Josephson effect [2]. The phase difference ¢(z,t) between the two wave functions can
show, temporally and/or spatially, a highly correlated behavior. In particular it can be
shown, by means of a simple electrical model [3], that the phase satisfies a partial differ-
ential equation (PDE) known as the Perturbed Sine-Gordon equation. This equation,
if only one spatial dimension is longer than the so-called Josephson penetration depth
Ay and in the so-called ’inline’ configuration, is:

Bt — Pz + sinQ = adt — fdzxt. (1)

We have in addition two time-dependent boundary conditions for a current biased junc-
tion irradiated by a microwave field [4,5]:

$2(0,t) + B2(0,8) = —x + n(t), (2a)
¢x(l’t) + ﬁ¢xt(l’t) =X+ ﬂ(t)- (2b)

In these formulas all the distances are normalized to A;, and times to wy; = &/A;, the
plasma frequency, where @ is the speed of light in the junction. n(t) is the normalized
external magnetic field at the edges of the junction, oo and § are loss parameters, and
x is the normalized bias-current supplied to the junction.

It is well known that Eq.(1) admits solitonic solutions [1,4]; in the context of Joseph-
son junctions such solitons are named "fluxons’ because they carry a flux quantum h/2e.
In the absence of any time dependent signal, n(t) = 0, the fluxons propagate back and
forth in the junction, the energy dissipated in the propagation being replenished by the
bias current at the boundary x. Thus the frequency of the fluxon w¢,.. is dependent
on the bias current x via a non-linear relation. From the second Josephson equation
it is possible to link the frequency of the fluxon to the d.c. voltage at the end of the
junction; the branches obtained on the current-voltage (I-V) d.c. characteristics are
called Zero Field Steps (to recall the absence of any external field, also static), and cor-
respond to the propagation of one or more fluxons; we often refer to them simply as the
unperturbed I-V curves. If we write for the external signal the form n(t) = nosin(w,t)
[4,5] a single fluxon can be forced, for some values of the bias current, to oscillate in
phase with this signal at the same frequency w,, i.e. the soliton is phase-locked to the
external signal (the values of the bias current for which we have this effect are called
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phase-locking range). More generally a phase-locking state is obtained if after m periods
of fluxon and n periods of the external signal the same phase-relation is reached, i.e.
the frequencies of the signal and of the fluxon are in a fractional ratio [6]. Thus we
have the following link between the soliton frequency and d.c. voltage at the end of the
junction (in normalized units) [6]:

n
Vaom = —wsg. (3)
m

In the phase-locking range of bias-current this phenomenon gives rise to constant-voltage
steps on the I-V characteristics of the junction. Steps on I-V characteristic were observed
in several experiments [7]; in many cases this observation is referred to them = 1,n =1
case (fundamental frequency of the junction), that has, as can be demonstrated (see
Ref. [6]) the biggest phase-locking range. Experimentally subharmonic steps, m > 1,
appear to be [8] much smaller, and, in general, are difficult to observe, though the theory
predicts phase-locking ranges smaller than the case of the fundamental frequency, but
surely in principle not unobservable. As we will see this experimental difficulty can be
ascribed to chaotic behavior in long junctions pumped with a subharmonic frequency.

Kautz [9] first observed chaotic behavior in small (with respect to A;) Josephson
junctions both numerically and experimentally. For such a junction equation (1) reduces
to the equation of a forced pendulum; the short junction can be locked to the external
signal (again producing constant-voltage steps on the I-V curves), but for suitable values
of the amplitude and frequency of the external signal the phase-lock becomes unstable
and a period two solution appears. Since now a frequency of the system is not well
defined Eq. (3) can be substituted by

4w

v <Tp>aue ’ (4)
where T}, is the period of pendulum oscillations. Continuing to increase the ampli-
tude of the signal the system undergoes a standard bifurcation cascade until a chaotic
behavior is reached. It is interesting to note that constant-voltage steps on the I-V
curves again exist also if the pendulum motion is chaotic for a short range of values
of amplitude of the external signal after the beginning of the chaotic region in the pa-
rameter space [9]; sometimes this phenomenon is referred to as ’phase-locking chaos’ or

frequency locking’ [5,10], but we prefer the more correct name of ’voltage locking’.

In the long junction case chaotic behavior has been observed numerically in many
cases [11,12,13]. In all these cases the chaos is both spatial and temporal (turbulence),
i.e. it appears essentially as a higher-dimensional phenomenon clearly related to the
infinite degrees of freedom of the full equation (1).

On the other hand we can proceed in another direction: applying the McLaughlin-
Scott [14] perturbative approach we can treat the motion of a single fluxon in the
junction as the motion of a relativistic particle in the interior of the junction. Giving to
this particle-fluxon a sharp energy supply at the boundary [15] we can, if the frequency of
energy supply is in a fractional relation to the time of flight of fluxon T} in the junction,
phase-lock the soliton to the external field. This method is called 'map approach’ after
[6] because we can write, solving the equation of motion of the particle-fluxon in the
junction, an (analytic) bidimensional map directly in terms of time of flight Tk and
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energy yi (here the label indicates the k-reflection of the fluxon at one edge of the
junction). We do not write explicity the map here; the interested reader can find it in
ref. [16]. Obviously if we know the times of flights of the fluxon, we can obtain the

d.c. voltage by means of the formula (4) merely identifying T, with Tj cfr. [6]. If the

external signal makes n periods while the fluxon makes m oscillations in the junction,

the Eq. (4) reduces to Eq. (3). Since the map is analytic an analysis of the stability of
phase-locked solutions can be easily conducted: if the amplitude of the external signal is
sufficiently high again phase-locked solutions are unstable and 2-times of flight solution
sets in. Then continuing to increase the amplitude, via a bifurcation cascade, the system
becomes chaotic, i.e. fluxons travel in the junction with a chaotic distribution of times
of flight.
The features of this chaotic motion are studied in detail in the ref. [10,17], here we
limit ourselves to report the main aspects only:
i) the amplitude of the external signal necessary to arrive at the chaos decreases with
m, i.e. chaotic states appear mainly on subharmonic steps m > 3;

ii) in terms of the bias current x the chaos begins to develop on the unperturbed I-V
characteristic at the center of the phase-locking step;

ili) increasing the losses, « and g, the stability of the system is increased;

iv) the system appears to be ’voltage locked’, i.e. though the motion of fluxons is
chaotic, the average of time of flight in Eq.(4) is such that V remains unchanged
at a phase-locked value, so on the I-V characteristic the step remains vertical;

v) continuing to increase the amplitude of the external signal the system produces
very long TOFs, that consequently annihilate the fluxon after a certain value 79,4.

It is natural that the low-dimensionality of this chaos is an intrinsic feature of the
perturbative approach used to reduce a PDE to an ODE equation. In fact the hypothesis
of a single particle-fluxon propagating in the junction is essential in the perturbative
approach to obtain all the above mentioned results. Nothing can be asserted about the
full equation (1), i.e. we cannot say that (1) shows this type of low-dimensional chaos
except by directly attacking it.

Our procedure was first to choose a region of parameter space where the map shows
chaotic phenomena; then we have integrated numerically Eq.(1). The method used is
based on the reduction of Eq.(1) to a system of ordinary differential equations (ODE’),
then integrating the ODE’s using some standard method (or methods). In our case,
to obtain a very careful integration, we have used two different spatial discretization
formulas (3-point and 5-point formulas within the junction) and two different methods
to integrate the ODE system (a simple and fast Predictor-Corrector method [18] and a
Bulirsh-Stoer method [19]). The results appear to be the same, within the discretization
and time-step induced errors.

Using the map prediction we search for chaotic dynamics on a junction of normal-
ized length { = 10, pumped with a frequency of 1 = 0.4 on the m = 3 subharmonic.
Biasing the junction at center of phase-locking step, x = 0.493, with an external am-
plitude of 7g = 0.100 the fluxon appears to be phase-locked to the external signal. In
Fig.(1) we report the voltage peaks at two edges of the junction signaling the reflection
of the fluxon at the edges. The time interval between two successive peaks yields the
TOF of the soliton in the junctions, from Fig.(1) we see that this time is constant and
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equal to T = 23.56, which implies a phase-locking voltage of V = 0.2666 = (2/3) 0.4 ,
as follows by Eq.s (3) and (4).
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Fig.(1)

The small undulations following the reflection peaks can be ascribed to external
signal effects when no soliton is present at the edges. The error, deduced from the
numerical data, in the estimation of TOF is of the order of magnitude of the time-step,
which is At = 0.01; thus we can resolve TOFs separated by more than this time-step
(this fixes the above reported number of significant digits in the voltage). In Fig.(2)
we have increased the value of 7o to 0.150: as is clearly seen we have now a 2-TOFs
solution in the junction. The two TOFs adjust themselves to make again V = 0.2666.
Continuing to increase the amplitude of the external signal the 2-TOFs solution becomes
unstable and the dynamics evolves via a bifurcation cascade to a chaotic state, that is
shown in Fig.(3) for a field no = 0.190. Though the motion is chaotic the system is
again ’voltage locked’ to the external signal: in fact the numerical evaluation of Eq.(4)
over n, ~ 103 reflections gives for the voltage V = 0.2667.

We stress that n, is a relatively small number with respect to what might be used
in a ’'map approach’, but in the PDE system it has to be considered a good goal, in view
of the long integration time of the Eq.(1) (the number of the time steps in a typical run
is ~ 10%). However in the PDE system this situation is not permanent, further increase
in the amplitude of the external signal leads to the loss of 'voltage locking’: in fact for
a field 70 = 0.260, we obtain V = 0.2080, i.e. also the voltage assumes chaotic values
and on the I-V characteristic the step ceases to be vertical. The bifurcation-cascade
for the PDE approach is shown in Fig.(4). In Fig.(4) we have marked with an arrow
the positions of 7o relative to Fig.s (1) and (2). The dotted line is the approximate
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separation between the *voltage locked’ region and chaotic voltage region, occurring at
an amplitude no,, ~ 0.195. After 70,a ~-0.270 the fluxon motion is unstable and the
fluxon is annihilated.
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An estimate of the Feigenbaum ratio:

f= lim Mo,n+1 — No,n

n—o0 Mo,n — Mo,n—1

where 79,,, is the value of ntk-bifurcation parameter, for the PDE data gives f ~ 6.1.

Comparision of Fig.(4) with the ’map approach’ bifurcation [18], obtained with the
same parameters, gives two quantitative differences. The first is that in the PDE model
the phase-locking appears to be more stable, i.e. the value of the first bifurcation in the
PDE approach is ~ 20% higher than in the map case; this can be partially explained
with the differences in boundary conditions in the two methods: in the map context
the external signal is an ’abrupt’ delta function whereas in the PDE it is a ’smeared’
sinusoidal signal, which implies that a strict comparison between the two amplitudes is
not possible.
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Moreover the bifurcation tree in the PDE is ’longer’, i.e. the interval of 7o in
which the fluxon is stable (including the chaotic regime) is about 2 times the same
interval with the map. On the other hand a comparison between map and PDE strange
attractors shows that both objects are structurally very similar [20] confirming that the
map approach grasps the substantial dynamics of Eq.(1). The main features of this
chaotic motion of fluxon (PDE low-dimensional chaos) can be summarized as follows:

i) also here the amplitude of the external signal necessary to arrive at chaos decreases

with m, i.e. in all runs chaotic states appear only on subharmonic steps m > 3;

on the steps at the fundamental frequency an amplitude of 7o ~ 0.5 in general
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destroys the 1-fluxon solution, but up to such an amplitude neither chaotic motion
nor bifurcations are exibited;

ii) in terms of the bias current x the chaos begins to appear on the unperturbed I-V
characteristic at the center of the phase-locking step;

iii) increasing the losses, o and §, the stability of the system is increased;

iv) the system appears to be 'voltage locked’ until an amplitude 7o, i.e. though the
motion of fluxons is chaotic, the average of time of flight in Eq.(4) is such that V
remains unchanged at the phase-locking value; after 7¢,, the 'voltage locking’ state
is lost;

v) a further increase of the amplitude of the external signal produces very long TOFs,
that consequently annihilate the fluxon beyond a certain value 79,q.

It is interesting to note that the value of 79 4, depends upon the bias current x, but the
minimun is not at the center of the step, which implies that deviations from the voltage
begin to develop in the low bias part of the step. A possible explanation could be the
overlapping of attraction basins of more subharmonics [21].

Fig.(5)

To give a measure of the permanence of a high spatial coherency also during the
chaotic motion we have numerically evaluated the spatial mean autocorrelation of the
soliton profile:

1 /T
Flz) = 7 /0 dt ($e(z + o/, 8) e[, ) (5)
For a well-defined fluxon lineshape we expect correlation to extend over a distance of
the order of Ay, i.e. the typical distance of variation of the phase in the junction. A
first result of this calculation is shown in Fig.(5), where we report Eq.(5) for three
typical cases: phase-locking, and two chaotic solutions. As is evident from the figure
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correlation extends over a distance of the order of A; in all the cases. In Eq.(5) T was
chosen of order of 102 periods. The small decrease in the spatial correlation of 7o = 0.190
curves is within the accurancy of the estimate of integral (5). Thus we conclude that
in the entire parameter interval the fluxon remains highly correlated though its motion
is chaotic, confirming the existence of a low-dimensional chaotic attractor for the full
PDE system governed by Eq.(1).
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1. Introduction

Nonlinear dynamics undergoes a period of explosive growth today. However some federative
concepts have emerged : solitons for nonlinear waves, strange attractors for dissipative
phenomena, resonant tori in hamiltonien theory, scaling laws and fractals in many physical
systems from low dimensional chaos to fully developed turbulence. In particular, nonlinear
oscillator differential equations provided a source of inspiration for perturbation methods in
the early work of Diiffing, Van der Pol and Rayleigh, then for bifurcation and modern
qualitative analysis in the work of Poincaré, Birkhoff and others russian mathematiciens
including Liapourov, Andronov and more recently Kolmogorov and Arnold.!? Most of the
modern approach turns around the idea of periodic orbits and resonances in hamiltonien
systems. From Kolmogorov-Arnold-Moser (KAM) theory we expect to preserve the structural
stability of nonresonant tori against small hamiltonien conservative perturbations.?
Perturbed resonant trajectories were first studied by Poincaré who predicted the pheno-
menon of splitting of separatrices and local stochasticity for two degrees of freedom (2-tori).
One popular example of Poincaré-Birkhoff theory of resonance is given by the so-called
Henon mapping as a model of the motion of stars in the gravitational field of the galaxy.4®
For n-tori (n>2) a random wandering in the resonant regions between invariant tori (Arnold
diffusion and stochastic webs) was predicted.® More recently the minimal dimensionality for
stochastic webs to form in hamiltonien systems reached its lower bound (n = 1.5), the half
degree of freedom refering to a time periodic perturbation.?

In this paper we study nonlinear oscillator problems in the spirit of modern theory of
resonance. We emphasize that the concept of winding number and Arnold tongues is the most
relevant to study structural stability of resonances. We derive a criterium for the numerical
plot of Arnold tongues and apply it to Arnold's circle map and others two dimensional
mappings.” Then we find an explicit form of Poincaré surface of section closed to resonances
of oscillator differential systems. All these mappings are found nonhamiltonien so that
current knowledge about the nature of resonance cannot be used.

Phase mapping for Mathieu equation is found one dimensional : correspondingly the
amplitude-phase mapping is critical between elliptic and hyperbolic behavior. We find
regions in parameter space where the frequency locking is reached through intermittent
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phase locking. It is associated to a structure of the parameter space in localized chaotic
regions and escaping regions.”

Mappings for the Morse oscillator, Van der Pol and Diiffing equation leads to a new concept of
phase turbulence. At the high amplitude edge of the Arnold tongue, a transition layer is
found where the dynamics changes from stable to chactic through intermittent phase and
frequency jumps. Phase becomes chaotic through doubling of jumps leading to a probability
distribution resembling the Cauchy density. On the other hand, in the transition region, the
winding number (or frequency) shows jumps of amplitude € scaled approximately as €. They
obey a 1/f power spectral density.

2. Structural stability for oscillator mappings

According to hamiltonien topology the trajectory corresponding to an n-dimensional
integrable system lies on an n-dimensional torus. This allows to write the solution explicitely
in terms of action-angle variables. The coordinates are the most useful when we consider the
n-1 dimensional surface of section of the torus. Recent work has focused at the simplest case
of a 2-torus because the surface of section has 1 dimensional form 6,4+1 = 0, + Q (mod 1)
where Q = @ /w, ; w, and w, are the two frequencies for the trajectory winding around the
torus and 0y, is the angle (or phase) at the nth cross section of the trajectory.

Let now consider the nonlinear phase motion closed to a resonance in an ordinary pendulum.
It can be approximated as®?

< .
Opp1 = 0, + Q= = sin2n0 (mod 1) M

To study eq. (1) we introduce the rotation (or winding number, or mean frequency) with the
relation

w = i:n; (On—GO)/n @

In the unperturbed case, w = Q so that the curve w = f(Q) is just the straight line ; no
structurally stable regions is seen since even a slight variation of parameter Q leads to a new
resonance. When ¢ = 0, the w = {(Q) curve has small steps near each resonance Q = p/q
(pand q € Q) and forms a devil's staircase. There are also steps in the w = g(c) curve. Each
region with a constant winding number is a so-called Arnold tongue. At ¢ = 1, the devil's
staircase is complete and has a fractal dimension D = 0.87.° When ¢ = 1, locked regions
begin to overlap and this is the threshlod for chaotic trajectories to exist in phase space. The
concept of rotation intervall was introduced to account for structural stability above the
chaotic limit.!?
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In order to obtain a numerical plot of Arnold tongues, we derived the following criterium :
given a small real number ¢ and a big integer n, we admit that two points Q, cand Q@ + AQ,
¢ + Acbelongs to the same Arnold tongue if

n n
|wQ+AQ,c+Ac - wﬂ,cl <e @

where wn means n iterations of the mapping. This definition implies the nonexponential
divergence of initially closed trajectories. It also implies the connexity of sets in real space
and can be used to derive the Mandelbrot's set.” Arnold tongues for mapping (1) are given in
Fig. 1.

Fig.1: Arnold tongues for the circle map (3)

In the figure we choosed n = 250 and the color code was choosen equal to [1/w] where []
means the integer part. Arnold tongues are a useful tool to study the qualitative phase
dynamics. As an example, we found intermittent phase locked states closed to the boundary
between the stable 0/1 region and the chaotic region (2 = 0.33 ; ¢ = 3.7). At this point the
winding number (or frequency) has an approximate 1/f power spectral density. Intermittency
will be also found at the transition to chaos in oscillator differential systems.
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3. Closed to resonances Poincaré mappings of oscillator differential systems

KAM theory predicts structural stability closed to resonances of an hamiltonien
nondegenerate mapping. At resonances Poincaré-Birkhoff theory predicts overlap of
secondary resonances and local stochasticity in a layer enclosing the separatrix between
resonances. KAM theory fails when the unperturbed system is linear because the degenary
condition is fullfilled ; this is the case of Zaslavsky mapping which leads to stochastic web
and Arnold diffusion.® We will encounter another failure of the conditions for KAM theory to
apply : Poincaré mappings for oscillator differential systems may not to be hamiltonien. We
will show that the transition to chaos for these mappings is characterized by intermittent
phase and frequency jumps obeying scaling laws.

To derive these Poincaré mappings we assume the closed proximity of a resonance. Let
consider the unperturbed periodic signal x(t) = r(t) exp (i6(¢)) with non dimensional frequency
Q = w,/0,, where w, and w, are the unperturbed frequencies on the resonant torus. At each
crossing of the Poincaré section for the perturbed torus, the trajectory will undergo a phase
jump A8 and an amplitude jump Ar. They are calculated by assuming that the amplitude is
constant p = p, and the phase vary linearly in time 6 = wt during each period between two
crossings. The jumps process is then generalized between the nth and n+1th the crossing
leading to the explicit relation for the Poincaré section.

The method will be applied here to Morse, Van der Pol and Diiffing oscillators with main
emphasis on the phase motion. The Morse potential provides a useful basis for interpreting
the vibrational spectra of diatonic molecules. In conjonction with a sinusoidal force it allows
to explain stochasticity and dissociation of these molecules. Van der Pol equation is a useful
model of relaxation oscillators ; Diffing equation provides a model to account for amplitude-
frequency effect and bistability observed in high quality piezoelectric resonators. The closed
to resonances phase behavior of these three models is similar and leads to phase and
frequency jumps obeying scaling laws.

The hamiltonien for the periodically driven Morse oscillator is
o2 ~alu—u )2 (4)
II:-—+D<1—e e)—c(u—u)cos(oot+q))
2m € o
where u is the internuclear distanece, u, is the equilibrium distance, v is the momentum, m
the reduced mass, D the dissociation energy, a is the potential parameter and ¢ the excitation
amplitude.!!

Hamilton's equations are written in dimension less variables as

¥ =(1-2y
y=~0-2x+ AcosQr+ )

(5)
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with the new parameters x = 1 - e-alu-ue), y = v/ V2Dm ; the new time scale is t = wqt with
e = a V2D/m, Q = wl/w, and the excitation amplitude is A = ¢/ (2Da).

Rewritting eq. (5) in polar coordinatesx = rcos @,y = rsin ® we get

r= Asin® cos(Qt+ <D0)

(6)
¢'= -1+ rsin?®cos® + reos d + (A/r)oos<bcos(QL+<DO)

From now we assume the closed proximity to a resonance. Using the relations

r:ro,d):Qt when 0 <1<20/Q (D
and integrating during the first period of oscillation we get amplitude jump Ar and phase
jump Ad. The jump process from the nth to the n + 1th period gives the Poincaré section in the
following form

e =1y + 07 esin@uo )

(8)

8 .. =06 +0 |1 -
1 n

et oos(2119") (mod1)

2n rn-fl

where we have used the mod 1 phase 6 =-®/2n and ¢=n/A. The jacobian matrix & of the line-
arized system at the fixed points 2n6,=0 or n is such that det X =t and trd = 2+ Q2¢%/ry?
with Q1 (1 F ¢/ (2nr,)) = m € /N. The map is conservative and both fixed points are
unstable.

Van der Pol equation is written in dimensionless form as

= —x+£x'(1—axz)+Acos(QL+<DU) (9)

where Q = w/w, and t = wgt. With the same notations as above, its Poincaré section takes
the form

P = rmeta - ari/4)] + ¢ 07" sin (@00 )
1 ¢ (10)
8 =0 +0 1|1 - — cos(2n0 )| (mod 1)
n+l n o0 r 1 n
n

where ¢ = nA. It is interesting to observe that for an autooscillating motion at amplitude r,
= 2/Va the Morse eq. mapping (8) is found. In subsequent analysis we will restrict for this
case.

Diiffing equation is written in dimensionless form as

2+ px' +ox+ 5af = x, c05(Qv+ @) an
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With the same notations, its Poincaré section takes the form

_ -1
S0 =8, [1 - e( Q)]+ ¢ Q (sm2n9n)
12
_ o-! 2 ca! 9 1
9n+1 = Gn + a +sn+1) = ons » cos (20 n) (mod 1)
n

with s = K\r; K, = 1/2(3 8/2)'2 ; () = 2n2(QQ) (Q is the quality factor of the resonator)
andc = na,K,.

In the case of high Q resonators, e(Q) < 1 so that the mapping is conservative. Period 1 fixed
points (8,, so) are given by
0
2008 =
°om (13)
Q7M1 + 8 oK /@)1 =m€IN

By linearizing the map at the fixed points we find tr £ > 2for the fixed point 6, = 0. The
fixed point 2018, = n may be stable ifltrf( | < 2. By contrast to the Morse oscillator, inclusion
of the square term s?, 4 1 leads to linearly bistable states. The point 8, = 0 corresponds to the
normal use of a piezoelectric resonator and will be the only one studied further.

4. Phase mappings of oscillator differential systems

In the small amplitude limit r, = 0 all mappings (8), (10), (12) have the one dimensional
form

1
_— ‘.1 —
9, ,,=0, +07 - o cotg (20 ) (mod1) (14)

Plotting the winding number (2) versus the frequency ratio Q' we find none structurally
stable regions. We plotted the phase jump A8, = 6,41 - 6, (mod Q) (Fig. 2a) and the
winding number (Fig. 2b) versus the number of iterations (n < 25 550 ; the time signal curve
is at the bottom of plots). Jumps of arbitrary amplitude are found. This behavior is
reminiscent of Cauchy type processes.'? Going back to the modulo 2n phase @ = -2n 0, the
phase jump X = A® obeys the equation

X:—-cotgq):tg((b-g) (15)
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Fig. 2: Phase and frequency jumps for mapping (14)

From Fig. 2a, phase jumps seems to evolve randomly and probability theory is useful to
describe the motion. Eq. (15) corresponds to an experiment in which a vertical mirror evolves
freely and randomly with an angle ® around its axis and projects a horizontal light ray at a
distance X from its starting position. If ® is assumed uniformly distributed between 0 and n,
the distribution function is F(X) = ®/n = 1/2 + (1/n) arc tan X and the probability density is
f(X) = F'(X) = 1/(n(1+X?)). The normal density (1/n) exp(-X?) is recovered only at small
distances X. The X axis is approached so slowly that no expectation value or second moment
should be expected.

We defined the probability density P(£) as the probability that X makes a jump of magnitude
€ as usual
P(0)de = prob. (£<X <€+ dt)dl (16)

and plotted this density in log.log scales when X is the phase jump (Fig. 2a) or the frequency

jump (Fig. 2b). As shown in Fig. 2a, the probability density approximates the Cauchy
density. On the other hand the probability density of frequency jumps approximately scales
as €1,

This scaling picture gives rise to a power law frequency dependence of the Fourier spectrum.
The phase jump amplitude € and the life time 7 are easily derived by differentiation of the
resonance condition (7) to get € = Q “C so that the scaling law becomes P(£) = P (Q OC). Asis
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well known this distribution of lifetimes leads to the power frequency spectrum with Fourier
frequency @ as follows

T

=i

S($)=J
1+ w

5 PCE) a7 amn

Since P(T) = % -a, we get S(@) = @ -2+a with a = 2 for phase jumps (white spectrum) and
a 2 1for frequency jumps (1/w spectrum). Numerical experiments confirms this conjecture.

Mapping (14) approximates the phase motion when the amplitude of selfsustained
oscillations r = ry is small. For nonsmall amplitudes r, the motion can be studied in
parameter scales Q' and q = ¢ Q' / r, with the following mapping

- -1 9 .
0n+]—6n+Q —(2n>c032r10n/(1+qsm2n0n) (mod 1) (18)

Arnold tongues for this mapping are given in Fig. 3. We studied numerically the transition
from frequency locked to chaotic regions by using a one dimensional bifurcation diagram for
the amplitude € of a phase jump versus the nonlinear parameter q (Fig. 4a with Q! = 1 and
Fig. 4b with Q1 = (V5-1)/2).

Fig. 3 : Arnold tongues for the Van der Pol eq. mapping closed to a limit cycle (Eq. 18)
in nondimensional parameters q = ¢ Q'/ry, Q! = wy/w

This transition is shown on Fig. 3 for the main tongue 1/1. We observe an increase of the
phase jump amplitude until at 0.79 < ¢ < 0.82 the phase jump remains constant. When
0.82 < q < 0.83 four phase jumps are allowed. When 0.83 < ¢ < 1 a doubling cascade is



300

seen. Phase jump probability density shows no large scale correlation in this region. At ¢ =
1, an abrupt change of behavior happens, large scale jumps are seen and probability densities
described in cotg mapping (14) are found.

.5

(a) (b)
Fig. 4 : Bifurcation diagram for the amplitude of phase jump in mapping (18)

For Diiffing equation, nonlinear stability at the fixed point 6, = 0 has been studied
by assuming that the excitation frequency is such that Q! = m € /N. From (13), s, =
(1/2 a1 K,)'3. Introducing the new parameter g = g/s,, the phase mapping in (12) becomes

0 =0 +0° '+ —g—[l—cos2n9 /(1+;sin2ne N (mod1) 19
n+l n 2n n n

Eq. (19) differs from (18) by the phase shift g/2n. The net effect of this term is to tilt Arnold
tongues towards the low winding number region. The transition region between stable and
unstable states extends slightly with minor changes.

&

5. Conclusion and perspectives

The analysis can be persued further by looking at the effect of amplitude-phase coupling on
Arnold tongues. The transition to chaos has some spectacular consequences in the
intermittent behavior of trajectories in phase space. One example is given for the Morse
oscillator at the resonance 1/1 (Fig. 5a) : at starting times the trajectory switches
intermittently between the two wells ; then it may escape from the central region and collide
erratically at edges of the phase space. For incommensurate frequencies the phase space
shows a wavelike trajectory (Fig. 5b).
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Fig. 5: Trajectories in phase space for the Morse eq. mapping (8)

As a conclusion, a new picture of resonance emerges from the study of Poincaré section in
oscillator differential equations. Conditions of KAM theory are not filled since perturbations
are nonhamiltonien. For sustained oscillations a transition to chaos through intermittent

phase jump doubling leading to Cauchy type density and 1/f frequency noise is found.

Numerous applications can be expected : stability of piezoelectric clocks, models of

dissociation in complex molecules or celestial mechanics.

Acknowledgements : The author wish to thank J. Miehe for helpful discussions.
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NOISE INDUCED BIFURCATIONS IN SIMPLE NONLINEAR MODELS
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Abstract

For two generalizations of the Stratonovich model with Gaussian white noise
(GWN) and dichotomous Markovian process (DMP) the stationary probability
density and moments are calculated. The bifurcation pattern of the
stationary solution can be changed qualitativly by wvarying the
deterministic or the noise parameters. We show cases where noise induced
states and a subcritical bifurcation can be detected only from the

knowledge of the variance.

1. Introduction

We consider systems far from equilibrium described by a simple nonlinear

differential equation with few parameters and a noise term,
x = f(x) + g(x)'R, . Y

Rt denotes the noise. If the stationary solution X, of the deterministic
equation f(x)=0 bifurcates one observes similarities with phenomena in
equilibrium phase transitions associating the position of the maxima of the
stationary probability density with the order parameter. For Rt being a GWN
g, (with < §> =0, < EE.,> = 2D-8(t-t’) ) or a DMP I, ( with <I>=0,
< ItIt,> = Azexp{—folt—t’l} ) the stationary probability distribution is
calculated explicitly following standard methods [1-10]. For multiplicative
coupling of the noise with the linear term the bifurcation point is
shifted. For suitable chosen f(x) and g(x) the bifurcation type can be
controlled by deterministic as well as by noise parameters.

For two generalizations of the Stratonovich model we show in which way the
bifurcation pattern can be changed completely shifting the deterministic
and the noise parameters and ask wether these changes can be detected
already from the knowledge of the first and second moments. This is of

interest for more complicated models wich do not allow to determine the

stationary probability density.
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2. Crossover from Supercritical to Subcritical Bifurcation Driven by Noise

The model is given by the equation
X = ax - x+ (x - bxa)'Rt ,b>0 . (2.1)

If the control parameter a changes its sign the deterministic part of (2.1)

describes a supercritical (forward) bifurcation, cf. Fig.l.

Fig.1. Bifurcation of the stationary solution of Eq.(2.1) in the
deterministic case. The arrows show the direction of the flow.

2.1. The Case of GWN

The analysis of the flow yields a certain region in the (x,a)~plane (dashed
in Fig. 2) which cannot be left once reached, i.e. this region is the

support of the stationary probability density.
s + - // +

- l—l—/ /UJ _

\\}- A \b" II a
NN

TN

= PN

o

Fig.2. Support of the stationary probability density (2.2)

For a < 0 the stationary probability density Ps is degenerated to &(x) like
for the Stratonovich model. For a > 0 the stationary probability density

and the moments are given by

a

-1 - -1
'll—ble zb ‘exp { %ﬁ (a-b_i)/(1~bx2)} , (2.2)

o

Ps(x!xo> 0) = N'x
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rr(2,9) .-
F[FZ(D; 2)) bq/z( 1;D:b )a/zw( §D+ ';_l ’ 'az—n" v zn(b a)) ! ach”’
2D
<x¥ > = (2.3)
b_q/z ‘l’( -2, 201, %D(a‘b-i) ) asb” ]
| \y[ L 'az'n" 1 %n(a_b-i) ) ’ |

Y(a,b;x) denotes the degenerated hypergeometric function [12}. Obviously
in the case a > b"‘l moments of order g2 diverge. The extreme values of Ps
obey the equation 3b’px*- (4bD - 1)-x2+ D - a = 0, Noise induced states are
possible iff 4bD>1. The regions of different qualitative behaviour of Ps

are shown in Fig. 3.

BJ\

2

0

Fig,3 Phase diagram in the parameters ;aa/ZD, g:‘l/sz.

~ ~

Varying the parameters a and b along the arrows in Fig.3 bifurcation

patterns as shown in Figs.4a-f are possible.

Fig,4a=c. Bifurcation patterns for varying a along arrows a-~c in Fig.3.
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ol
s

Fig.4d-f, Bifurcation patterns along arrows d-f in Fig.3.

We discuss now the shape of PS for a < b—l. For subcritical bifurcations Ps
is bimodal in a certain parameter region. For supercritical parameters Ps
is monomodal. The peak becomes sharper with increasing a so that the
variance should decrease. It is evident that in this case the maximum of
the wvariance must be located at wvalues of a smaller than D, ie. a
subcritical maximum of the wvariance indicates a subcritical bifurcation,
These qualitative arguments are supported by the numerical results shown in
Fig.5. To distinguish between monomodal and bimodal behaviour one may also

consider other integral quantities of Ps, e.g. the entropy.

Fig.S5, Moments for model (2.1).

2.2, The Case of DMP

N
t . . .
The DMP It =A(-1) -, (Nt is a Poisson process) jumps only between two

states. To determine the support of the stationary probability density one
considers the flow for the realizations +4 and ~A, The solutions of the
equation f(x) * Ag(x) = 0 form the borders in between the system is pushed
to and fro by the DMP [10]. There are two different possibilities for the
shape of the support of Ps shown in Fig.6.
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Fig.6. Sﬁpport of the stationary density (2.4) for b<1/A (a), and b>1/A (b)

In the GWN limit Fig. 6b transformes into Fig. 2. P 5and the moments are

calculated as

-2(M+p)-1 A-1 -1
Ps(xlx0 > 0) = N- |1~bx2| X . xz—xf 'lxz—xﬂ ) (2.4)

' . 2, Ap-1 e
xq B()‘,")‘_I‘H‘Q/z)-F(Q/z"ly)‘iQ/z‘u’z] X+b U-q/2 F(q/zv)‘:Q/z IJ,Z)
2 2 A 2 A+
+ B(A,~A-u) 1 + x+/x_- E - bx," —HE

with z=xf/xf for a < min{4,1/b}

F (k+u+ 1-q/2 ,u,k+u;z) - bfo (Mu—g/z ,u,k+u;z)

F(k+u+1,u,k+u;z) bxf‘F(Hu,u,Mu;Z)
with z=(xf—xf)/xf for A < a <1/b

bfo (Mu—q/z ,k,Mu;z) - F (k+u+1—q/2 ,k,k+u;z)

x -
+

1

bfo (Mu,k,kw;z) F(k+u+1 ,x,k+u;z)

{ with z=(x"-x")/x for A<1/b < a : (2.5)

where we use the notations 2A=za/(a+d), 2u=ot/(a~4) and x:2t=(a;tA)/(1:tbA).

F(a,b,c;x) is the hypergeometric function and B(x,y) the beta function. For
a <0 Ps in (2.4) is not normalizible. For this parameter region PB = &(x)
as shown in [9]. The possibilities for the qualitative shape of Ps are the
same as for GWN but the phase diagramm is much more complicated due to the
additional parameter.The extreme values of Ps obey a cubic equation in y:xz
3b(b’A%-1)y° + (2ab+2ab+5-Tb 0%)y°+ (5bA’-2ab-20-6a+a’b)y + 20at+a’-A% = 0.
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3. Crossover from Supercritical to Subcritical Bifurcation Driven by the

Control Parameter

We consider another generalization of the Stratonovich model [10,11],
X = ax + 2bx3— x5 + xR, (3.1)

Depending on the sign of the control parameter b the stationary
deterministic part of (3.1) describes a supercritical bifurcation (b < 0)

or a subcritical bifurcation (b > 0), cf. Figs. 7a,b.

x {
X ‘ _'_‘__,_.—-—""_’—"—
f < f
4 1 |
to0 t a ] 0 ‘ a
i
f S
}

Fig.7. Supercritical and subcritical bifurcation of the stationary solution
of Eq.(3.1) in the deterministic case.

In the following we focus our interest on the case of a subcritical

bifurcation.

3.1 The Case of GWN

Depending on the initial value Xy> 0 (xo< 0) the whole upper (lower) half

plane is the support of Ps. For Ps and the moments we obtain

Y
Ps(x]x°> 0) = N-x ° ‘exp { Il) } R (3.2)
< xq 5 = F( %D+ %) (ZD)-q,4 %—a/ZD q/Z[ p/2 ) , (3'3)
(%) 3. 0rznlh/ 7% )

where .‘Zp(x) denotes the parabolic cylinder function [12].
The extreme values of PB are given by x2 =b %/ b2+a——1/D. The phase
diagram is shown in Fig. 8.
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b

s
N

0 -

a
Fig.8.Phase diagram

_112]

The bifurcation patterns are similar to those of Figs. 4a, ¢ and d. In Fig,

9 we show the moments and variance as functions of a.

0 D a 0 D a 0 D a

Fig.3. Moments for model (3.1). The dotted lines correspond to the

Stratonovich model.

3.2. The Case of DMP

After a certain time the system is trapped between the boundaries X, and

X, s where x__,= b+oy b2+a+0’A . The shape of the support is shown in Fig.10.

o0

2
Fig.1Q. Support of the stationary probability density (3.4) for b >A (a)
and b <A (b).
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The statidnary probability density is given by

0) ~ _1|'| -27\0.( 4 g2 2,02 O,A)x 3.4)
Pa(xlx0 >0) " x X X Xy0.X * 2bx .+ a + (3.
o 11

o’ 11

(4

with the exponents 2\ = o/(atol) and x = d/4(a+0’A+bx§o,)—1. The extreme
values of Ps obey a quartic equation in y = x2
9y - 28by>+ (20b% -18a-20)y°+ (4ab+l2ab)y + 2aa+a’-a% = 0

The bifurcation of the extreme values occurs at a = min (A—bz,—ct+{0(2+A2 ]

Due to the four parameters of the model the phase diagramm is complicated
again. In analogy to the situation in Section 2 different bifurcation
patterns may be obtained changing the parameters in an appropriate way. The
moments can be expressed by series expansions. A detailed discussion is

however feasible only for fixing special values of the parameters.
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Introduction

A quite relevant theme in biological physics is the coherent energy transduction
at the macromolecular level. One of the main theoretical problems in this field is
the construction of a realistic model for nondissipative intramolecular energy transfer,
through a nonlinear coupling among different degrees of freedom (DOF's).

In the recent past a soliton model, originally proposed by Davydov, has been exten-
sively studied [1] in the general context of energy transport in proteins. We contributed
[2,3,4] to the subject with a molecular dynamics study of acetanilide (ACN), a model
for a-helical regions in proteins. In our work on ACN chains we have investigated the
dynamics of the DOFs involved in the soliton generation and propagation. If a soliton
travels along such a chain, one may have an ordered dynamics in a limited region of
space, and for a limited time; the ordered region would move along the chain with the
soliton. Because of the need to recognize those vibrations that can sustain ordered
motions over adequate time scales, in a background of chaotic uncorrelated motions, we
have elaborated new diagnostic tools to analyse the dynamical coherence of each DOF
in a complex molecular system.

In a highly chaotic regime one does not expect to observe qualitatively different
behaviours among the different DOFs: equipartition of energy holds and memory of the
initial conditions is rapidly lost. However, in the transition from a fully chaotic regime
to a regime dominated by ordered motions, one expects to find a mixed situation where
part of the system may have a degree of chaoticity which is different from the rest of
the system, and which could also vary in time. The usual indicators of order and chaos
(e.g. Lyapunov spectra [5], fractal dimensions [6], spectral entropies [7]), which give
a global information on the system and are based on asymptotic time scale estimates,
would not be useful, e.g., in identifying in the complex structure of a molecular chain the
DOFs involved in a soliton. In this work we propose new indicators: partial Lyapunov
exponents, computed from the dynamics of the tangent space vector associated with a
given dynamical system. The finite time analysis of the growth rate of the components
of this vector will give the required knowledge on the chaoticity of the single DOFs.
In order to test our diagnostics we study here a simple dynamical system exhibiting a
large range of characteristic frequencies.
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The model

Qur model consists of a system of five nonlinearly coupled linear oscillators. The
hamiltonian of the model is given by:

5
H= %Z(p? +wigt) + Zq,q, (1)

i=1 t#]

In one case, which we call the single gap system (SG), the values of the frequencies
are the following: w; = 1, wy = 7, w3 = 2, wg = 10e, and ws = 30; in another case,
which we call the double gap system (DG), we put ws = 90. The choice of the last
two frequencies, an order of magnitude higher than the first three, is aimed at showing
the influence of a broad range of frequencies with a gap on the dynamics of the various
DOFs.

We have numerically integrated both the equations of motion and the variation
equations of motion with the central difference algorithm. In our case the second order
equations of motion are:

ﬁ,‘:—w?qi—zzq?qi i=1,...,5. (2)
J(#4)
The equations of motion in the tangent space (variation equations) are related to the
stability of the orbits; they are usually written as first order equations, obtainable from
the hamiltonian equations of the system. If £; = F;({x;}) are the hamiltonian equations
of motion, where z; is one of the ¢; or one of the p;, then the equations of motion of the
tangent space vector ¢ corresponding to the variation of & are given by:

o T LD, .

where the factor of y; is computed along the trajectory (). Here we write (3) as
second order equations:

1,5 1,5
b=-(w?+2) d0)6-1Y au®,  m=k
J(#49) i(3#9)
i=1,...,5, (4)
where (€1,...,85,71,...,75) = ¥, with & and 7; corresponding to the variations of ¢;
and p; respectively.

From eqs. (4) one can compute the Lyapunov spectrum in the usual way [5]; in
particular, the maximum Lyapunov exponent is given by:

. 1 |§(#)l
Av = Lm M), Mt) = ;LO!JW (5
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where §(0) is the initial vector in the tangent space, taken randomly. We have defined
new partial Lyapunov exponents (PLEs), referring to single DOFs:
242 2

R {OE S {0)
2t " wiE2(0) + 77(0)

We want to remark the following point. It is a necessary condition that at least
one of the ); is equal to Aps, the maximum Lyapunov exponent defined in (5); but, a
priori, some of them could be smaller. However, a generic initial vector in the tangent
space will expand in modulus like e*#* when ¢ — oo with probability one. Therefore,
also );, for each i, should be equal to Aps with probability one. However, this is
true only in the asymptotic limit; it is not to be expected that the A;(¢)s, at finite
times, should be equal. As a matter of fact, their differences are a central point of our
investigation. It turns out that, in the transition region between ordered and chaotic
motions, there are still significant differences in the values of the A;(t)s for times three
or four orders of magnitude higher than the characteristic periods of the oscillators.
This is the manifestation of a qualitative diversity in the behaviour of the single DOFs.
We have studied the differences among the A;(¢)s by computing the quantities §;(t) =
(A(t) = Ai(t))/Am, and we have defined a characteristic “coherence time” for each DOF
through:

A= lim )\i(t), )\i(t) =

t—+o00

=1,...,5. (6)

T
Ty = %A t6,'(t)dt. (7)

Maximum Lyapunov exponents

We have studied the two versions of our model at different values of ¢, the energy
per DOF, or energy density. We have computed the maximum Lyapunov exponent
(Ap) to find out whether a transition in the dynamics takes place and the energy range
in which this happens. In Fig. 1 we show Aps at different energy densities for the SG
version of our model. It is evident from the sharp change in the slope of Log(Aas) that
such a transition takes place indeed [8], and is located between ¢ = 0.9 and € = 1. Below
this threshold the slope is strongly positive: Ay changes by four orders of magnitude,
passing from € = 0.7 to € = 1. Above the threshold the slope becomes small. The value
of Ay for the DG version at € = 0.7 is 1.04 x 1073, much larger than the corresponding
value in the SG version (0.79 x 10™*). This point will be discussed in the last section.

In the frame of the KAM theorem [9] it is interesting to contrast the values of Ay
with the anharmonicity of the system. We have computed the ratio R of the anharmonic
to the total harmonic energy, and we report in Table I its values at the different energies
that we have simulated. It is interesting to note that at ¢ = 0.6, where the system SG
gives Apr = 0, the anharmonicity R is still as high as 4.7% . This shows that for this
system - with a significant gap in the frequency spectrum - the ratio of the perturbed
part of the hamiltonian to the harmonic part may reach quite relevant values before the
KAM tori begin being destroyed.
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TABLE I

€ 0.6 0.7 0.8 0.9 1.0 1.5 2.0

R(%) 4.7 5.1 5.5 4.5 5.8 6.4 7.4

1071 |
107°
Ay -

1073 |-

1074 L
-
’— 1 ll L 1 l L ) I ] [ 1 1 1 1 l 1
0.5 1 1.5 2

€

Fig. 1. Maximum Lyapunov exponent vs. energy density (SG case).

Correlation functions

The statistical properties of the dynamics of the single DOFs may be characterized
by the autocorrelation functions (ACFs). We have collected in Fig. 2 these functions
for the harmonic energies of the different DOF's for the SG case, at total energy density
e=0.9.

Some of the graphs are symmetric with respect to the zero line. This happens
because in Fig. 2 only maxima and minima over groups of 100 computed points are
plotted, in order to have clear graphs over large times. In the case of an ACF rapidly
oscillating around zero this appears as a symmetrical graph. This way of plotting is
sufficient if one is interested in studying the decay of the ACFs. From this point of
view, they exhibit quite different patterns: there is a clear distinction between the high-
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and low-frequency DOFs at that energy; while the high-frequency ACFs show a short
decay time, the low-frequency ones exhibit a large decay time.

10 F = = - =
- 1| 2 |f 3 |} 4 | 5
0.5 -
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Fig. 2. Autocorrelation functions of the harmonic energy for the five degrees of freedom
(SG case), at € = 0.9.

Partial Lyapunov Exponents

We have computed the PLEs for the five degrees of freedom of our system at energies
near to the transition point individuated by Aps. In Fig. 3 we show a graph with five
curves corresponding to the DOF's for the SG case, at ¢ = 0.9. It is clear that, because of
the gap, the curves behave in very different ways; a group, corresponding to the DOFs
with small eigenfrequencies, oscillates around zero; a second group, corresponding to the
large frequencies, decays to zero only over large times. It should be noted here that the
dynamical behaviour of the individual DOF's, as derived from the PLEs, is not related
in a systematic way to the complementary information that can be deduced from the
ACFs. Thus, while the PLEs of the high-frequency DOFs show a slower divergence of
those DOF's for nearby trajectories (i.e., a localized ordered behaviour) than for the low-
frequency DOF's, the corresponding ACF's at the same energy give a different indication,
i.e., that the autocorrelation time is shorter for the high frequencies.

Using (7), one finds 7, = 182 and 75 = 192. The values computed for the low-
frequency DOF's are not significant because the variance of the integrand in (7) is so
large (in particular, larger than 7;) that 7; itself loses its meaning, as it could be expected
looking at Fig. 3. The variance of the integrand in (7) for i = 4,5 is small, which
shows that the corresponding functions §;(t) are close to hyperbola with the x-axis as
asymptote.

A point has to be remarked. One could try to assign a characteristic decay time
to the ACFs shown in the previous section. It is evident, inspecting Fig. 2, that the
shape of the ACFs in most cases does not allow to define a characteristic time of a
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decay process. Indeed, either the ACF's are correlated over times which are even greater
than the whole simulation time (DOFs 1, 2 and 3), or the structure is quite irregular
(DOFs 4 and 5). At best, in the last case, one could roughly identify in the ACFs a
superposition of two decaying processes with completely different characteristic times

[10].
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Fig. 3. Functions §; vs. time at ¢ = 0.9 (SG case).

We have computed the LPEs also for the DG version at € = 0.7. The LPEs are
shown in Fig. 4, using the same method as in Fig. 3. One can see that in this version,
where the high frequencies are separated, the corresponding 6;(t)s are also separated,
giving rise to quite different 7;s: 74 = 5400, 75 = 7800. Each 7; of the high-frequency
DOFs turns out to be approximately inversely proportional to Apr, when € is changed;
the proportionality constant is approximately the same in both versions of the model
for ¢ = 4. More generally, looking at all the results, this constant seems to depend only
on the frequency of each DOF.

Discussion and Comments

As noted before, the DG version has a Apr which is much larger, at ¢ = 0.7, than
the Aps of the SG version. That is, the system with the larger frequency gap is more
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chaotic. This shows how a prediction of the qualitative features of the dynamics of a
system based simply on an inspection of the frequencies (or frequency differences) of
the DOFs may be misleading. On the other hand, the characteristic coherence times
7; here introduced are able to single out the behaviour of each DOF also in a complex
situation, in which a clear definition of a correlation time through the ACFs may not
be possible (as shown in Fig. 2).
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0.2 |
5, Rl
1) L )
B i |k 1 ) ‘
“ ‘
j
_O'Jl A B RS R B
0 2 4 6 8 10
t/10*

Fig. 4. Functions §; vs. time at ¢ = 0.7 (DG case).

The shape of the curves given in Fig. 4 allows also to gain insight into the inter-
mittent character of the dynamics of a single DOF. The peaks which accompany the
time decrease of the curves indicate that the corresponding DOF have just had tran-
sient phases of more coherent dynamics, i.e., of lower values of the corresponding A;(¢).
If one computed the A;(t)s over time intervals comparable with the average width of
the peaks, one whould find a step-wise pattern, with short intervals of very coherent
dynamics for the single DOFs. The coincidence of these peaks in different curves gives
a clear indication of a cross-correlation of the coherent character in the dynamics of the
DOFs.

In conclusion, we would like to stress an important feature of the new diagnostics
we have introduced. When simulating a real system, one has always to use simplified
models; it is therefore necessary to ask oneself if the results derived from the computer
experiments are reliable. In this context the question of structural stability of the



317

equations of the model is of utmost importance. As this question is usually very difficult
to answer for complex systems, one can think of using the PLEs to check whether the
DOFs which are more relevant in the description of the phenomena of interest in the
simulation have long coherence times. If this were the case, one could argue that these
DOFs would also be structurally stable for small changes introduced in the equations of
motion, in the same way in which they keep coherence for small perturbations of their
trajectory.

More fundamentally, the computation of the coherence times of the DOFs in a
realistic system, say in a biological macromolecule, could be a clue to understand how
certain specific DOFs are able to perform ordered dynamical sequences over time in-
tervals which are orders of magnitude larger than their characteristic period, while the
others simply vibrate in a disordered, thermal way.
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A major difficulty that appears in the study of dissipative systems in Quantum
Mechanics is that the canonical commutation relations (CCR) are not preserved by
time evolution due just to damping terms. Then one introduces fluctuating forces in
order to preserve the quantum mechanical consistency, namely the canonical structure.
Another way to handle the problem is to start from the beginning with an Hamiltonian
which describes the system, the bath and the system-bath interaction. Subsequently,
one eliminates the bath variables which originate both damping and fluctuations, thus
obtaining the reduced density matrix.

Purpose of the present paper is to discuss some aspects of dissipation in Quantum
Field Theory (QFT) resorting just to the relatively simple example of the damped
harmonic oscillator, whose classical equation of motion is

mit+yt+rr=0 . (1)

Contrary to the more traditional attitude by which one tries to accomodate the non-
unitary character of time-evolution implied by dissipation in the familiar framework
of the unitary operator algebra, our task here is to provide a picture of non-unitary
evolution at a quantum level without forcing or reducing it to the framework of unitary
operator algebra. In the following we show that in @FT there is enough room to
produce such a picture if one takes advantage of the existence of infinitely many unitarily
inequivalent representations of the CCR. As a prize for such an unconvenctional attitude,
the statistical nature of dissipative phenomena naturally emerges from our formalism
and some light is shed on the question of if and where the arrow of time can be find at
microscopic level.

In order to deal with an isolated system, as the canonical quantization scheme
requires, a procedure of doubling of the phase-space dimension is necessary[l]. Thus
the lagrangian for system (1) is written as

1
L =may + 5v(ey — dy) — w2y (2)

where y denotes the position variable for the doubled system. Intuitively one expects
the y variable to grow as rapidly as the z solution decays: in this sense y may be
thought of as describing an effective degree of freedom for the heat bath to which
the system (1) is coupled. (1) is obtained by varying (2) with respect to y, whereas
variation with respect to z gives indeed my — yy + «y = 0 , which appears in
fact to be the time reversed (y — —) of (1). The canonical momenta p, and py
(the collection of dynamical variables {z, p,y, py} spans the new phase-space) are then
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. L o1 L .1 . .
given by p, = 32 =™ T3 Py = 37 = mE = 5Te. Canonical quantization may
z
then be performed by introducing the commutators [z,p, ] =ik = [y,py] , [z,¥y]=

0 = [pz,py ], and the corresponding sets of annihilation and creation operators a,al,b
1 1
and b'. Performing the linear canonical transformation A = —(a + b), B = —=(a — b),
g ﬁ( ) ﬁ( )
the quantum hamiltonian is obtained

H=Ho+Hr ,

3
Ho = hY(ATA—-B'B) , H;=ikD(A'Bt— 4B) | ®)

where T = L is the decay constant for the classical variable z(t). It is easy to realize

m
that the dynamical group structure associated with our system of coupled quantum
oscillators is that of SU(1,1). The two mode realization of the algebra su(1,1) is
indeed generated by

1
Jy=A'BY | J_=Jl=4B |, Js=5(ATA+B'B+1) (4)

. .. 1
corresponding to the Casimir operator C defined as: €% = i +J2 - §(J+J— + J-Jy)

1
= Z(A*A — B'B)?. Note that [Ho,H;] =0 ,as Hp is in the center of the dynamical

algebra.

Let us denote by {|na,np >} the set of simultaneous eigenvectors of A'4 and BB,
with n 4, np non-negative integers. Let the initial state be the vacuum |[n4 = 0,np =
0 >= [0 >, such that 4|0 >=0 = B|0 >, its time-evolution is given by

exp (—it%) |0 >=exp (—it%) 0>
()
exp (tanh(Tt)J4)[0 >

|0(¢) >

1
= cosh(T't)

namely a two-mode Glauber coherent state [1,2, 3] (i.e. a generalized coherent state for
su(1,1)). Eq. (5) shows that at every time ¢ the state |0(t) > has unit norm, however
as t — oo it gives rise to an asymptotic state which is orthogonal to the initial state
[0>: <0(t){0(t) >=1 and

JLim < 0(t)|0 >= [Lim exp (- Incosh(l't)) -0 . (6)

Eq. (6) expresses the instability (decay) of the vacuum under time evolution op-
erator U = exp —it—hl—>. We reach thus the conclusion that as an effect of damping

(recall that H; — 0 as v — 0) the time-evolution generator H; leads outside the original
Hilbert space of states. As the ordinary quantization procedure requires that a definite
representation of the CCR should be used in order to describe the system under study,
we say that the time-evolution generator of the damped oscillator, by leading outside
the original Hilbert space, produces unquantization. This is an obstruction which is to
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be bypassed in producing a canonical scheme. One should notice that so far the problem
was tackled within the framework of Quantum Mechanics, namely within a scheme were
the von Neumann theorem only allows unitarily equivalent representations of CCR. In
what follows, we intend to show how the pathology exhibited by (6) can be controlled
if one operates in a different scheme, giving up in particular the condition of finiteness
of the number of degrees of freedom. This, in turn, is obviously equivalent to moving to
a second quantization scheme, i.e. to a QFT, where the infinite number of degrees of
freedom allows the coexistence of infinitely many unitarily inequivalent representations
of the CCR’s. The most straightforward extension to QFT of the hamiltonian given by
eq. (3), describing an (infinite) collection of damped harmonic oscillators, is

H= HO + HI »
Ho =) hQ.(AlAc—BIB.) , Hr=iy hl.(AlB!-4(B.) , (7)

where x labels the field degrees of freedom, e.g. spatial momentum. As usual, the
computational strategy is now to work at finite volume of the system V, and to perform
at the end the limit ¥V — o0. The commutation relations are:

[AK?AI\]:(SK,)\:[BK,BI\] 5 [AK’BI]=0=[AK,B)\] . (8)

We still have [H,H;] = 0, and corresponding to eq. (5) we have (formally, at finite
volume V),

1 (x)

= TN gy K ) 9
|0(¢) > 1:[ b (ToD) exp (tanh (Tut)J5 )|0 > (9)

with J{ = ALBI. Moreover <O0(t)[0(t)>=1 V¢ ,and
< 0(t)|0 >= exp (— Zln cosh(I‘,J)) ; (10)

which shows how, provided ) "T'x > 0,
tl-l—glo < 0(8)|0 > tl_i_’ngoexp (—t ZF"> =0 . (11)
Now, using the customary continuous limit relation — L d*k, in the
- (2r)3

infinite-volume limit we have (for / d*k T, finite and positive)

< 0(¢)|0 > o 0 vt ,

oo 12
<0(t)|0(t’)>v——->0 Vi, b, t#EE (12)
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‘We notice that the time-evolution transformations
Ap s Ag(t) = e 7M1 4,e'M1 = A, cosh(Dxt) — Bl sinh (Dyt) ;

L, » (13)
Bi s By(t) = e 'sM1B v "1 = _ Al sinh(T'xt) + By cosh(T,t)

and their hermitian conjugates can each be implemented, for every &, as inner automor-
phism for the algebra su(1,1),. Such an automorphism is nothing but the well known
Bogolubov transformations. The transformations (13) are canonical, as they preserve
the CCR (8). So, for each t we have a copy {A.(t), AL(t), B«(t), BL(t); [0(t) > |V&}
of the original algebra and of its highest weight vector {A,, AL, B.,Bl; |0 > |V«},
induced by the time evolution operator. The time evolution operator can therefore be
thought of as a generator of the group of automorphisms of @ su(l,1), parametrized
by time t. "

It is very important to point out that the various copies need not to be unitarily
equivalent representations of the CCR’s; as a matter of fact, they do become unitarily
inequivalent in the infinite-volume limit, as shown in (12). This implies that the auto-
morphisms (13) are defined up to arbitrary intertwining operators; in fact, one should
more accurately say that the dynamical algebra X is given globally by the doubly-

continuous direct sum EB EBA”(‘) osu(1,1)., where A** denotes the intertwining

i K
operator [4,5, 8] connecting the representations realizable at time ¢.
As a direct check, one can easily verify how at each time ¢ one has

A(B)0(t) >=0= B,(®)|0t) > , Vt
The number of modes of type Ay is given, at each instant ¢ by
Na, =< 0(t)|ALA«|0(t) >=sinh?(T't) ; (14)

and similarly for the modes of type Bi.
The state |0(t) > on the other hand may be written as:

1
— - 1 pt
[0(t) > = exp (—2SA) exp (XK: AKBK) 0>
1
— sl T AT
= exp (—283) exp (Z: BKAK> 0>

(15)
with

Sa ==Y {AlAclnsinh? (Tut) - A, 4] Incosh?(Tut)} (16)
and Sp given by the same expression with B, and B] replacing A, and A}, respectively.
As A.’s and B,’s commute, due to (15) we shall simply write S for either S4 or Sp.
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From (15) one derives the expansion |0(t) >= .5, v/ Wa(t) |n,n > , where n denotes
the multi-index {n,}, with 3>° S Wa(t)=1 , ~

<O)ISI0(t) >= =Y Wa(t)In Wa(t) . (17)
n>0

Eq. (17) leads us therefore to interpreting S as the entropy for the dissipative
system. On the other hand we have, for the time variation of |0(t) >

0 i
—a—tlo(t) >= —E’Hflo(t) > . (18)
Use of egs. (7) and (16) shows then that
0 108
500 >= - (35 ) 0y > (19)

1,08
which may also be derived directly from (15). Equation (19) shows that : (5 ha) is

the generator of time-translations, namely time-evolution is controlled by the entropy
variations. It appears to us suggestive that for a dissipative quantum system the same
operator that controls time evolution could be interpreted as defining a dynamical vari-
able whose expectation value is formally an entropy: we conjecture that the connection
between these features of S reflects correctly the irreversibility of time evolution char-
acteristic of dissipative motion[6]. Damping (or, more generally, dissipation) implies
indeed the choice of a privileged direction in time evolution (time arrow) with a conse-
quent breaking of time-reversal invariance.

We also observe that < 0(t)|S|0(t) > grows monotonically with ¢ from value
0 at ¢ = 0 to infinity at £ = o0o; i.e. the entropy for both A and B increases as the
system evolves in time towards the stability condition at ¢ = co. Moreover the difference
S84~ S8p of the A- and B-entropies is constant in time: [S4 —Sp,H] =0 . Since the
B-particles are the holes for the A-particles, S4 — Sp turns out to be, in fact, the
(conserved) entropy for the complete system.

In conclusion, the system in its evolution runs over a variety of representations of
the CCR’s which are unitarily inequivalent to eac h other fort # t' in the infinite-volume
Iimit. It'is in fact the non-unitary character of time-evolution implied by damping which
is recovered, in a consistent scheme, in the unitary inequivalence among representations
at different times in the infinite-volume limit.

Also, the statistical nature of dissipative phenomena naturally emerges from our
formalism, even though no statistical concepts were introduced a priori: for example, the
entropy operator enter s the picture as time evolution generator. It is therefore an inter-
esting question asking ourselves whether and how such statistical features may actually
be related to thermal concepts. Let us clarify this point in the following discussion.

Let us focus, for the sake of definiteness, on the A-modes, and introduce the func-
tional

Fa=< 0(t)|(’HA - -;-SA) o) > . (20)
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B is a strictly positive function of time to be determined; H 4 is the part of Hy
relative to the A-modes only, namely Hy = ZhQKALAK. We write 9, = I'«t, and
K

look for the values of ¢, rendering F4 stationary:

OF 4

39, 0 ; Vk (21)

Condition (21) is clearly a stability condition to be satisfied for each representation.
Setting E, = hSl,, it gives

B(t)Ex = —Intanh®(d.) . (22)
From (22) we have then

1

Na,(t) = sinh®(Txt) = AOB. 1

(23)

which is the Bose distribution for A, at time ¢ provided we assume S(t) to represent

the inverse temperature §(t) at time ¢t (kp denotes the Boltzmann constant).

_ 1
- k‘BT(t)
This allows us to recognize {|0(t) >} as a representation of the CCR’s at finite temper-
ature, equivalent — up to an arbitrary choice of the temperature scale, which is a differ-
entiable function of time - with the Thermo-Field Dynamics representation {|0(8) >}
of Umezawa and Takahashi[7].

We can now therefore interpret F4 as the free energy and A4 as the average number
of activated A-modes at the temperature defined by time t through the function 8(t).
In function of the time, the change in the energy E4 = ZEKNAN is given by the

K

relation dE4 = 3, E.N,dt ; as one should expect, since the time evolution induces
transitions over different representations, which in turn imply changes in the number of
activated modes. Time derivative of V4, is of course obtained from eq. (14). We can
also compute the change in entropy [8]

a5y = o (<00ISal0(D) >) = BN = PaBA) . (24
Eq. (24) shows that
dE, — %ds,, =0 . (25)
op 1 oT

~ 0 (which

When changes in inverse temperature are slow namely

at kpT? -—é?
is the case for adiabatic variations of temperature, at T high enough), eq. (25) can be
obtained directly by minimizing the free energy (20) dF 4 = dE4 — %dSA = 0; which -
by reference to conventional thermodynamics — allows us to recognize E4 as the internal
energy of the system. It also expresses the first principle of thermodynamics for a system
coupled with environment at constant temperature and in absence of mechanical work.
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1
We may also define as usual heat as d@ = ,—B_ds . We thus see that the change in time

dN 4 of particles condensed in the vacuum turns out into heat dissipation dQ.
Let us close this paper with few remarks[8]. The total Hamiltonian (7) is invariant

under the transformations generated by J; = @ Jé") . The vacuum however is not

K
invariant under J; (see €q.(9)) in the infinite volume limit. Moreover, at each time t,
the representation |0(t) > may be characterized by the expectation value in the state

k) 1 .
|0(t) > of, e.g., J?E ) _ 3 thus the total number of particles n4 +np = 2n can

be taken as an order parameter. Therefore, at each time t the symmetry under J2
transformations is spontaneously broken. On the other hand, H; is proportional to J;.
Thus, in addition to breakdown of time-reversal (discrete) symmetry, already mentioned
above, we also have spontaneous breakdown of time translation (continuous) symmetry.

In other words we led dissipation (i.e. energy non-conservation), as it has been
described in this paper, to an effect of breakdown of time translation and time-reversal
symmetry. It is an interesting question asking which is the mode playing the role of the
Goldstone mode related with the breakdown of continuous time translation symmetry:
we observe that since n4—np is constant in time, the condensation (annihilation and/or
creation) of AB-pairs does not contributes to the vacuum energy so that AB-pair may
play the role of Goldstone mode.

From the point of view of boson condensation, time evolution in the presence of
damping may be then thought of as a sort of continuous transition among different
phases, each phase corresponding, at time ¢, to the representation |0(t) > and charac-
terized by the value of the order parameter at the same time ¢. The damped oscillator
thus provides an archetype of system undergoing continuous phase transition.

We also observe that in perturbation theory a basic role is played by the adiabatic
hypotesis by which the interaction may be switched off in the infinite time limit. It is
such a possibility which allows the definition and the introduction of non-interacting
fields. In the case of damped oscillator the switching off of the interaction in the
infinite time limit is not possible since time evolution is intrinsically non-unitary and
the adiabatic hypotesis thus fails. As a matter of fact we have seen that the set of
annihilation and creation operators changes at each time and the same concept of non-
interacting field thus loses meaning. We thus conclude that damping and dissipation
require a non-perturbative approach and perturbation methods may be used only for
local (in time and temperature variables) fluctuations.

Finally it has been recently shown[10] that the squeezed states of light entering
quantum optics[11] can be identified, up to elements of the group G of automorphisms
of su(1,1), with the states of the damped quantum harmonic oscillator.
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Coherence and Quantum Groups
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Quantum groups have shown in recent years to be an exceptionally promising and
rich structure whereby one can expect a growing wealth of new results in statistical
mechanics and quantum field theory !, Stemmed out of the algebraic structure dictated
by integrability conditions for a class of integrable systems, quantum groups can be
intuitively thought of as the deformation (determined by the quantum Yang-Baxter
equations and the R-matrix they involve) of the universal enveloping algebra of some
given Lie algebra £ of dynamical variables yet preserving the associativity properties
of £ (we consider here quantum groups as synonymous of Hopf algebras, disregarding
more general definitions).

On a different side, an increasing deal of attention has been devoted to the notion of
coherence in optics[?l. In particular a strong interest has been devoted to squeezed states
those, constructed as generalized coherent states for suitable algebras, may describe a
wide class of systems characterized by reduced quantum fluctuations.

Recently, and unexpectedly, the two fast developing fields of research have been con-
nected and quantum groups have been introduced in the context of quantum optics. (31,

An interesting role in the description of the physical features of this new model —
which represents situations in which the interaction between atom and radiation field
is intensity dependent — is played by a set of states recently introduced by (4,

In the present note the two concepts of quantum groups and squeezing are discussed
together taking into account the ideas of ref. [l and it is shown that they can already be
bridged in the simple setting provided by a subtle g-deformation of the usual coherent
states.

So, to reach our goal we have to refrase the usual approach to coherent states
in such a way that it can be "quantized” i.e. we have to stress the Lie algebra (or
superalgebra, as we shell see) aspects of the usual creation and annihilation operators.
The Fock space, from this point of view, is simply a representation of this structure.

When the "right” algebraic aspects has been identified, we know, at least in prin-
ciple, from the general properties of quantum groups how to perform the job: the
representation (i.e. the Fock space) will remain unmodified while the generators change
in function of a parameter (usually called ”q”, for "quantum”). This means that the
quantum operators are elements of the universal enveloping algebra of the original ones;
to be more precise they are the same of the corresponding non quantum ones, but
multiplied for integer functions of the Cartan subalgebra and of the Casimir operators.

The first and simpler idea would be to deform the group H(1):

(@,a)=H, ([N,a]=-a, [N,a]=a, [H, ]=0. (1)

The quantum groups are new mathematical objects and their general theory is, quite
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far from complete, but semisimple quantum groups are well known and, so, the best
way for our job is to generalize to quantum groups the concept of contraction 5], It can
be shown that the contaction is more or less the same with the basic difference that the
”q” parameter also is involved in the singular transformation.

Conforming to this idea, we define the following transformation on the four gener-

ators of U(2), = SU(2), ® U(1) and on the parameter z = logq.

a £ 0 0 0 0 Ji
a 0e 0 0 O Ji
N|l=]o0oo0 -1¢2 o Js 2)
H 0 0 O 2 0 K
w 00 O 0 &* z

where K is the U(1) generator; explicit and simple calculations show that this is exactly
the singular transformation — beside the part related to z — giving (1) from u(2).

The transformation (2) is applied to U(2), (letting e = ¢) i.e. to the structure
that have the algebraic relations:

(74, Jx]) = £J4, (7,71 =[2J§), = %—;— (K, -]=0,

the coalgebra:
Ay = e_z'jg/2® J+ + Ji®ez']3q/2 ,

AJS=1QJ+Ji®1,
AK=19K+K®1,

and counit and antipode:

1008) = =T/ 1y 2B gy = -0, ) =K
el) =1, eJzx) = €J]) = e(K) = 0,

we get taking the limit ¢ — 0:

B sh(wH/2) ~ ~ _
[aq,aq]=w—/2, [N,a) = —a,, [N,a)=3a, [H,-]=0.

end

Aaq=e_wH/4®aq+aq®ewH/4, Aaqze—WH/4®aq+aq®e“’H/4, (3)

AN=19N+N®l, AH=1QH-+HQ®1.
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Counit and antipode are:

7(“41) = —aq, 7(‘_19) = =g, 7(N) =-N, 7(H) =—H
(1) =1, day) = e(ag) = N) = «(H) =

We note, in passing, that the contraction is a very powerful technique and it can
be used also to derive the universal R-matrix of the quantum algebra we obtained (let
us call it H(1),) from the one of U(2),. Explicit calculations give:

_ —(w/2(H®N+N®H) ,; % (w1/2ewH/4 a,)" o (wl/ze—wH/4 aq) k

In this way, the quantified of the algebra (1) has been studied in all aspects. This is
very interesting, particularly because it is the first example of non semisimple quantum
group studied in all details but cannot help in building deformed coherent states: at
the algebra level H(1), is completely equivalent to an H(1) in which only the Planck
sh(wH/2)
w/2

the g-oscillators of H(1), are the same of the ones of H(1).

The play is different if instead of the algebra (1) we quantize osp(1|2). With a
suitable choice of the generators it can be written:

constant has rescaled as: H' = . So, disregarding this irrelevant rescaling,

l\Dl)—l

{a,a} =4M, [M,a]= -—%a, (M,&] =

This superalgebra looks unfamiliar but, as a matter of fact, is nothing else that

the 3 generators structure of the creation annihilation operators, as can be easy seen

defining the number operator as N = 4M — %:

{a,a} =2N+1, |[N,a]=—a, [N,a]=a.
There is no room to discuss here the details of this quantization[®]. It results:

sh(uM)

1 1
{ag,a5} = —— shu/d ’ [M,a,] = —ay, (M,a,] = ‘2‘ (4)

2
The coproduct is easily obtained following!®) and is indeed different from (3):

Aa, = e—UM/2®aq+aq®eUM/2 , Ady = e_UM/2®dq+aq®eUM/2 :

AM=1M+M®1,

while counit and antipode are:
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v(ag) = “C_u/4 ag, 7(a)= _eu/4 aq , v(M)=-M,

(1) = 1, elag) = e(@g) = (M) = 0.

These relations turn S= 0spy(1|2) (sometimes called also B¢(0|1)) into a Zy—graded
Hopf algebra. In showing this one has to take into account the graded multiplication
and comultiplication on S®S!7. For instance, if b and ¢ are homogeneous elements in
S, then the product on S®S 1is defined as:

(a ®b)(c® d) = (—1)POP()(ac ® bd) ,

where p(b), p(c) € Z; are the degrees of b and ¢ respectively.

It 1s amusing that we have found the bosonic operators into a graded algebrai.e. in
a structure more suitable for describing the fermion ones, but this structure admitting
the q-expansion has many unexpected features. On this point we limit ourselves to quote
that it allows to generalize the well known Jordan-Schwinger realization of SU(2) to
SU(2)4: the generators of SU(2), are written as bilinear in the creation and annihilation
operators of ospy(1|2) exactly as the generators of SU(2) are written as bilinear in the

usual creation annihilation operators (8:
J{ =da JI=da, Ji= —1-(a1c_zl —a2a?)
+ 7 %t -~ %t 37 9\M%e [t P

Therefore, because 0spg(1]2) is a promising q-deformed structure at all levels, in-
cluding algebra, we can attempt to rewrite the usual theory of coherent states in its
scheme.

As a first step, we have to equip first the realization of § with the notion of
hermiticity that has been lost in the quantification.

Indeed, as stressed in general, the Fock space is not modified in the quantum
expansion and so § and consequently N can be identified with the customary Fock
space and its number operator but a, and a4 are different from a and a end are no more
hermitian conjugate: conjugation of (4) leads indeed to

a; = Qg+ [Xq(N')]_1 ’ a; = Xq(N)aq" »

where x4(N) is a function to be determined by suitable self-consistency conditions. A
convenient, natural assumption to fix it is that aq,a; are canonically conjugate with
each other, i.e. that in the corresponding sector & be identical with the usual Weyl-
Heisenberg algebra, namely [aq,a;] = 1. This condition induces the choice

1
_ ([N'i'l]q‘[N'i'l]q)z
q'lz'" —q_%" sinh(lnz)
where [n], = = — = ——%4—, with 2 =Ing. One has as well
q2 —q"z smh(;z)

oo () e - ()
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Notice that as ¢ — 1, everything collapse on the customary bosonic realization of the
Weyl-Heisenberg algebra.
On the states

1
i
aq|n>=([n]q) nin—1> ,

[n]e
agln > = ([[::11]]:‘)% (["+1T]Lqinl+1]q‘)% n+1> ,

whence Ggaqln >=[n]g|n >, alag|n >=n|n >. Note that aja; = a'a = N, because
ag end a]; differ from a and a4 only for a phase. |0 > is the highest weight vector of S:
al0 >=0.

We can at this point define the quantum analog of position (@) and momentum
(Py) operators :

Py=i (m;w)2 (@, —3af) , )
Qq = (-2—%;)§ (ag +a})

Qg and P, are hermitian and have commutation relation
. . 1
[Qq, Py] = ihg = ih(1 + 7 Re (ZB)N(N +1)+0(*)) . (6)

and give rise to a quantum version of the quantized harmonic oscillator, with hamil-
tonian

1 1 1,
¢ = %—qu + Emwqu2 = Ehw (a;aq + aqa;) (7)
1 1
= 5hw(l - §Re(z'*’)(n +1)* + 0(z4))

Note also that eq. (7) suggests a possible experimental test of the g-effects through
the spectrum of the quantum harmonic oscillator for large N.
We are now ready to define now the coherent states {|a;q > |a,q € T} by

agla;q >=ala;q >
it is straightforward to check that
|la; ¢ > = N(|al)exp, (adg)l0 >

s n
where exp, (z) = Z rrmT]—T is the quantum version of the exponential function ([n +
n=0 7

1]t = [n+1][n]!), and N(Ja|) is a normalization factor which with the above choice
turns out to be independent of ¢ : N(|a|) = exp (—1|a[?).
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Then also,

50> = exp(—31oP) 3 < (12l ) s

It is worth noticing here that : a) in the limit ¢ — 1, |a;¢ > turns into a
customary Glauber coherent state, b) the definitions adopted give for |a;¢ > a form
which is somewhat different from that of ref.!) (who, incidentally, give their definition
for ¢ € IR); a difference with interesting consequences.

In order to show that the coherent states above defined {|a;q >} are squeezed,

i.e. that their uncertainty in Q4 or in P, or in both is smaller of %Tz (or %Tzq , we don’t
discuss the details here) we have now to evaluate the variances of @, and P,. This can
be done numerically. For |¢| ~ 1 and |a| ~ 1 there are plenty of interesting situations
with astonishing squeezing especially when ¢ is near to the unit circle.

To conclude let us stress the fundamental result of the report: the quantum group
coherent states seem to be, in general, the natural candidate to describe squeezed quan-
tum states of matter.
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EXACT PERIODIC SOLUTIONS FOR A CLASS
OF MULTISPEED DISCRETE BOLTZMANN MODELS

H. Cornille
Spht CE Saclay, 91191 Gif-sur Yvette, France

ABSTRACT

Only for multispeed discrete Boltzmann models can we obtain well-defined temper-
ature. Recently different hierarchies of multispeed, multidimensional (d > 1) discrete
models have been characterized by their (1 + 1)-dimensional Pde along one axis. Here,
for the simplest hierarchy with five independent densities and two speeds which are 1
and either v/d or v/2, we construct (14+1)—dimensional periodic solutions. The physical
corresponding models are the planar square 8v;,d = 2 model and two three-dimensional
14v;,d = 3 models{ one of them being the Cabannes model).

1. INTRODUCTION

For unispeed discrete Boltzmann models (discrete velocities v; and densities Nj)
the energy E and the mass M are propotional so that the temperature T' = 2E/M V2
is ill-defined and cannot be distinguished from the mean velocity V. On the contrary
for multispeed discrete Boltzmann models, E and M are independent, all conservation
laws are satisfied and we can define and study the temperature.

For the unidimensional 4v;, d = 1 model with two speeds 1,2 and two different
masses for the particles, exact solutions have been found?.

For multidimensional models with d > 1 many multispeed models for single gas
(same mass for the particles) are known. We can classify these models following the re-
striction of their Pde along one x-coordinate axis. It was found that different hierarchies
exist which , for each class, are defined by the same set of independent densities and
a system of Pde differing only by the dimension d of the space?. For instance the 8v;
square model® with the x-axis along either the medians or the diagonals of a square and
the two 14v; cubic? Cabannes models belong to two different hierarchies and differ only
by the two dimensional d = 2 or 3 values. Then we can study the classes of d-dependent
exact solutions? for each hierarchy and find common properties for models which belong
to different spatial dimensions. We notice also the connections between discrete kinetic
models® and their partners in lattice gas models®.

Height different hierarchies have been found: Class I with two speeds 1 and either
\/J or \/f which include the square 8v; and two 14v; models. ClassIl with three speeds
0,1,4/2 including the square 9v; model. ClassIII with two speeds 2 and either vd or V2,
still including the square 8v; and two 14v; models. ClassIV with speeds 0,2, /2 includes
another 9v; model. Class V with 1,1/2 speeds begins with the popular 18v;model® and
ClassVI with 0,1, /2 speeds has the 19v; model associated to the 18v; one. Classes VII
and VIII have also the 18v;, 19v; models but with one speed equal to 2 instead of 1.
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For all these hierarchies of models, exact shock waves solutions have been found.
For the independent densities IV; they are of the type:

Ni=noi+n;/(1+e"), n=z—¢t

Up to now only for Class I, other exact solutions have been found.They are (1 + 1)-
dimensional solutions which are the superposition of two similarity waves, either real or
complex conjugate:

Ni = no; + n1i/D1 + n2i/ D3, Di =1+die™™, ni=z—¢

N; =no; + n;/A+n}/A* A =1+ 5ePtT7% § = real const. (1,1)

Periodic solutions were first obtained for the unispeed Broadwell model® and such so-
lutions exist also for one 14v; Cabannes model”’. Here we present periodic solutions for
the Class I hierarchy which include both the planar 8v;,d = 2 model and two three
dimensional d = 3, 14v; models. For Class I we notice also that (1 + 1)-dimensional
shock waves have recently been found®.

2. CLASS I HIERARCHY OF MODELS
For Class I thete exist 5 independent densities (N, My), M3, (N2, M) with coor-
dinates —1,0,1 along the x-axis and two collision terms C, D

C =¢(N2My — N1 M), D = dd.(MiMy — M3?),d = 2/d,d. > O arbitrary  (2.1a)

for two d-dependent subclasses (i) and (ii). We write down the system of five nonlinear
equations which include three linear ones equivalent to the mass,momentum and energy
conservation laws.We define py. = 8¢ 19,

p-Ni=—-p N; =C,Myy = D,p, My = —(d - 1)D +d.C,p_M; = —(d — 1)D — d.C
P—N1+pi+ N2 = pr My +p_My+2(D—1)Mz = pt M1 —p_My—2d,p_Ny =0 (2.1b)

We define the macroscopic quantities: massM, momentum J, mean velocity V = J/M

and energyE from which we can construct nontrivial temperature 7' = 2E /M — V%;

M= M + My +2(d = )M; + do (N1 + N3), J = My — My + du(N2 — N)

For the subclass (i) we have (2¢ + 2d)v;,the speeds are 1,v/d, and d, = 29!

V/(d+3)/2 . For the subclass (ii): 2(3d — 2)v;,the speeds are 1,v/2, and 2(d —

d.,2¢ = /5. For the d-dimensional coordinates let us write (z1 = =z, 23, ...,z4) for the
velocities of the different models. The three physical models (see fig.1) d < 3 are:

1)

d=2,80;: N; (£1,%£1), M; (£1,0), (0, £1)both (i) and (ii)
d = 3,14v;, (¢) : N; (+1,+1,+1), M;(+1,0,0), (0, +1,0),(0,0,+1) Cabannes model
d = 3,14v;, (3) : Ni (&1,£1,0),(£1,0, £1), M;(1,0,0),(0,£1,0), (0,0, 1)
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For the d = 2,d = 3(i),d = 3(¢7) models we see that N; (and N3) are the densities
associated respectively to 2,4,4 velocities in the space. For both models M; and My
correspond to only one velocity while M, is associated with respectively 2,4, 4 velocities.
For these models three types of collisions can occur: between particles of speed 1,
between particles of speed v/d (or speedy/2 for subclass (ii)) and collisions (1,Vd) «—
(1, \/E) However the second subclass (ii) with speeds 1, V2 is more interesting because
we can add another velocity (d = 2,9v; and d = 3,15v;) with speed 0 and then mixed
collisions are possible: (1,1) «— (0,+/2), (Class II hierarchy).

3. PERIODIC SOLUTIONS
3.1Algebraic Determination of the Solutions for the General d case

For the 5 independent densities we seek positive periodic solutions of the type(1.1):
Ni(z,t) = no1 +n1/A 4+ n]/A*, Na(z,t) = Ny(—z,t)
M (z,t) = mo1 + 2Re(m, /A), My(z,t) = My(~z,t), My = mo1 +ma2Re(1/A) (3.1)

with 6,4 and p in (1.1) and my in (3.1) real while n; = nig + inir = |n,| €% ;m; =
mir + myg in (3.1) are complex. We notice that N3 = N;, My = M; at z = 0 so that
these solutions satisfy a specular reflection boundary condition at a wall z = 0.

We substitute (3.1) into (2.1) and both from the three linear relations and two nonlinear
ones (with linear terms p_ Ny,My;) we find:

nrp+n1ry =0, mpp—myy+ p(d—1)mz =0
mig —m2; =m}, myrp+migy = d.(pnir — In1R)
pryr — g = —2(nipmar + nirmar) = 2¢(noymar + moinag)
pmz = Edc(\’nllz — m3) = 2dd.mo; (m2 — miR) (3.2)

For ten real parameters |ny|, 0, m1g,m11,m2, p,¥,n01, Mo1, dc We have eight real rela-
tions leaving two arbitrary parameters chosen to be ng, > 0 as the scaling parameter
and d. or equivalently & = ¢/dd.. We introduce scaled parameters ;7 = m,; /mir,
M2 = ma/mg and after some trivial algebra rewrite (3.2):

ey = 1— s = a(d — 1) sin® 0, 7y r = — tanb(1 + (d — 1)7,)

|n1| = ~no1(1 — (d — 1))/ cos 8(1 + dimz), mir = du|n1|/(M11sin 0 — cosd)
14+ Mz +moy/mig =0, p= 2—Jdcmmﬁf,/ﬁz, N = —p/tand (3.3)
We define n; = 1,75 = £1,7;2 = 1 and from the first three (3.3) relations we get:

mas =1/(1—d+n1v/a(d—1) cosb)
cos?0 —n, cosb0/(d —1)/a—1/2 +d(d —2)/2a(d —1) =0 (3.4)
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At the present stage we only give the algebraic construction of the solutions without
discussing the possible d; or a intervals for which the solutions exist and are positive.
From d, o given we first obtain cos §:

2cos0 = n1/(d—1)/a+n2v/2 + (1 +d(2 - d))/a(d - 1) (3.5)

giving i, with (3.4) and successively 7i1,|n1],m1R, p,7, mo1 with (3.3) and no1 > 0
arbitrary. Then with the scaled parameters we multiply by mig and reconstruct the
original ones m;, m2. For the complete positivity discussion we study successively d = 2
and 3. We recall® that for solutions with p > 0 it is sufficient for positive N; that
ng1 > 0 as well as mp; > 0 for positive M;. If these properties hold then the densities
are positive when the time is infinite and for positivity at finite time it is sufficient to
choose sufficiently large 6 in the complex denominators A. We recall also that for the
d = 3 subclass (i), Cabannes model, then Cabannes and Tiem’ have previously found
periodic solutions.

3.2 Positive Solutions for the d = 2,8v;, d. = 2, d. = \/5/204 Planar model

Theorem 1: For the d=2 case, the sufficient positivity conditions p > 0, mg; > 0 are
satisfied if: #; = —1, 72 = 1 and 0 < a < 4 or equivalently for the cross-section

d. > V/5/8.

The solution (3.3 — 4 — 5) can be written down analytically:ytan = —p and
0<cosf = (—1++v2a+1/(2va) <1, |n1| =2no1v/e/(3—v2a+1) >0 (3.6
mo1 = |n1|(—1+ v2a+ 1/(cos8 + /&) > 0, my = —2|n;|(1 + e %) /(v/& + cos )
mg = 2|n;|/(vVa + cosb), p=4dd.v/a(v2a+1-1+ a)|n|/(V2Za+1-1+2a)

The condition a < 4 arises from |n;| > 0.
3.3 Positive Solutions for the two d = 3,14v,, d, = 4, Three Dimensional models

Theorem 2: For the two d=3 case, the sufficient positivity conditions p > 0,mg; > 0
are satisfied if: n; = —1, 5, = 1 and (3 — \/5)/2 < a < 9/2 or equivalent conditions
for the cross-sections with d, = 31/6/4c for the (i) model and d. = 3v/5/4a for the (ii)
model.

In the (i) case we have ¢/d = 3v/6/4 and ¢/d = 34/5/4 in the (ii) one.The solutions
can still be written down analytically.

—1<cosb = (~1++a—1/2)/V2a <1, |ni| = no1vV2a/(2~ Va-1/2) (3.7
mg = 2v/2|n1|/ (V& + V2 cos8), my = —4(V2 + Vae ) /(V2cos 0 + /)
mo1 = 2¢/2a(a—1/2)|n1|/(e~1+Va~—-1/2) >0
p = dd¢|n1|8V2aasin®0/(a — 1+ v/a—1/2) >0, ytand = —p

The conditions on « arise from cos#f real, p > 0, mo; > 0 and |ny| > 0.
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3.4 Macroscopic Quantities Associated to the d < 3 models
d=2!M=M1+M4+2(M2+N1+N2), J=M1—M4+2(N2—N1)

E=(M1+M4)/2+M2+2(N1+N2)
d=3 (i)a.nd (1,1,) ‘M= M +M4+4(M2+N1 +N2),J=M1 —M4+4(N2—-N1)
(1,)E = (Ml +M4)/2+2M2 +6(N1 +N2), (ZZ)E = (Ml +M4)/2+2M2 +4(N1 +N2)

3.5 Numerical Calculations (fig.2)

We present the curves of the temperature for the d = 2 and d = 3 subclass (ii)
models corresponding to the same arbitrary parameters values: ng; =1 and d. = 1. In
order that the microscopic densities N; and M; be non negative we choose § = 7.8 for
the d = 2 model (see fig.3) and § = 4.5 for the d = 3 one. The temperatures are plotted

for 4z/2x varying in the interval (0,1) and we notice the symmetry with respect to the
0.5 value.
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Fig. 3 - Densities for periodic solutions
of the d=2 8v, model
dC=1 n01=1 6=7.8
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COLLECTIVE COORDINATES BY A VARIATIONAL APPROACH:
PROBLEMS FOR SINE GORDON AND ¢* MODELS
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The method of collective-coordinates obtained by a variational approach is examined
for the sine-Gordon and ¢* models. It is shown that the evolution equations for the
collective coordinates can be ill-defined because they are obtained by projecting on a
null vector. New ansatzes that do not have this problem are presented.

I. Introduction

A certain number of non-linear partial differential equations can be solved exactly by
the method of inverse scattering [1]. When they are perturbed the evolution of the
solution can be obtained by perturbation methods [2]. Parameters of the unperturbed
problem become slowly varying because of the perturbation.

In many other cases however only a few analytical solutions are known and the equation
only has a few conserved quantities so that the mathematical structure of the problem
is much more limited. In those situations to obtain the evolution of collective coordi-
nates a variational method can be used. This method introduced by Rice and Mele
[3] in the study of lightly doped poly-acetylene has had some remarkable sucesses for
the sine-Gordon model [4]. For kink-antikink collisions in the sine-Gordon equation,
Legrand guided by an algebraic identity gave a collective coordinate ansatz which he
used for the study of a perturbed breather [5]. This ode description compared well with
the pde solution despite of a sign error in the Lagrangian. The correct sign as will be
shown below introduces a mathematical singularity that cannot be removed. The shape
mode coordinate blows up when the breather is “flat” because the Lagrange equations
are obtained through a projection on a vector which becomes zero at that point.

The paper is derived from [6]. It is organised as follows. Section II presents the vari-
ational procedure in the sine-Gordon case. Section III explains the ill-definition of the
collective coordinates for kink-antikink collisions in sine-Gordon and ¢%. Section IV
shows how to fix things and introduces new ansatzes.
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II. The variational approach for the sine-Gordon equation

Consider the perturbed sine-Gordon equation:

Gt — Pzz +5IDQ = F(¢;¢t;t) (1)

When F = 0, equation (1) can be integrated exactly and two well-known solutions are
[1] : the breather

kpsin(wpt + ¢B))

éB(x,t) = darctan( w5 cosh(Fp)

()
where k4 = 1 — w% and the kink-antikink

sinh(-yrut)

u cosh(y,z) ) ®)

b (z,t) = darctan(

where v, = 7;%-;-75 is the Lorenz factor. Formulas (2) and (3) can be seen as special
cases of:

sinh(y(t)) )
osh(k(t)z)

where y(t) and k(t) have different expressions depending on whether the solution is a
kink-antikink or a breather. This ansatz relies on an algebraic identity between the
sum of a soliton and antisoliton profiles and the expression in the rhs of (4) —27. It
was put forth by Legrand [5]. The collective coordinate approach is to assume that the
solution has again the form (4) when the perturbation is present. In order to derive the
evolution equations for y and k, one could plug (4) into (1) but there would still be an
x dependance. Instead, a variational approach is used. Equation (1) with F = 0 can be
derived from the following Lagrangian density:

#(z,y(t), k(t)) = darctan ( (4)

1= 54 — 56— (1~ cosf) )

by writing that the variation of [ [Idzdt is zero. Assuming that the solution follows
(4), the evolution of y and k is then obtained from the Lagrangian L(y,y,k,k, t) =
J ldz where expression (4) for ¢ is used to compute (5), by writing the usual Lagrange
equations. The terms in the perturbation that cannot be incorporated in the Lagrangian
density such as the damping are treated separately [5]. If

F = esinwt — 6, (6)

the equations of motion are :

P =0A/85 (1.a)
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Q = OA/Ok (7.)
%1-3- + 6P =0A/0y (7.¢)
(fi_? +6Q = OA/0k (7.d)
where
A=gz§(1+ 2y — )= yk16——+k2——-[(7r + 4y*)(1 — = ) + 8y
k sinh 2y k? 3k h2y
2y 8 2

—8k(1 — sinh2y) - (tanh y)“(1 + - ) + 47rkesmwt (7.€)

is the Lagrangian and P ( Q ) is the momentum associated to y ( k ) respectively.

In the original paper of Legrand, a sign error was made in the coefficient of the k?
term in A. It was written to be (72 + 4y?)(1 + smmy) + 8y%. We will see that this
mistake completely hid the real behavior of the solution. All the terms in A except for
the coefficient of y? become 0 when y = 0. So only the y kinetic energy remains when
y = 0. Therefore numerical problems are to be expected for k when y is small.
Equations (7) can be integrated numerically by transforming them into a system of first
order differential equations using as variables ( y,k,P,Q). The equations for  and k come
from the definition of P and Q and are obtained by inverting the system:"

(@)= (3% abeFeen) (D) ®)

2y
sinh 2y

a=1+ 7=7rz+4y2

The equations for P and ( are given by (7.¢) and (7.d). Even in the absence of pertur-
bations problems are to be expected when y = 0 because the rhs. matrix of (8) becomes
non-invertible. To study that case § and € are set to 0. A breather initial condition was
chosen and its evolution monitored through the variables y and k.

All the standard ode integrators tried failed to get across y = 0 and maintain reasonable
accuracy. A finite difference energy conserving scheme suggested by Luiz Vazquez [7]
showed the same behavior. This situation is also observed by Flesch in his study of the
kink-antikink collisions in the ¢* model [8] even though he uses an algebraic differential
equation solver which is a completely different method. From these numerical results
it becomes clear that equations (7) are ill-defined when y = 0. It turns out that this
feature can be predicted from the ansatz (4).
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Before going into the detail of the explaination it is worth mentioning that the agreement
Legrand finds between the numerical solution of the pde and his collective coordinates
odes is for the y variable only. There is very little interplay between the y and k variables
except for when y=0. Computing (y(t), k(t)) with the wrong sign in (7.e) and a pure
breather initial condition with k& = 0.1 leads to a value of k about 10~ clearly non
zero but still small. The k terms in the Lagrangian are very small. Furthermore all the
comparisons are shown with the perturbation term present. One situation displayed is
a collision and annihilation due to damping; because of the damping it would be hard
to see the difference with the pde. In the other situation where the kink and antikink
pass through each other the comparison would point out the mistake. Therefore it is
important in these collective coordinate studies to check the agreement of the pde with
the behavior of all the variables.

III. Analysis of the singularity: the projection argument

The Lagrange equations derived from :
L(y’y’k’ic’t) = /l(¢t’¢r’¢,t)dz (9)

have a solution that is undetermined when y = 0. Legrand [3] examined in detail the
procedure in which (4) is substituted into (9). The spatio-temporal dependance of ¢ in
(4) can be written as: ¢ = ¢(z, a;(t)) where the a; are the collective coordinates. The
Lagrange equations from (9):

oL d 0L

imply using the fact that gi‘.;:_ = g‘%, integrating by parts with respect to x, and assuming
that % vanishes for  — +oo :

teo Al 9,0l g ,0 ,0¢

/_w “los ~ '8, ~ 535, 5a = ° )
Equation (11) is the key to the understanding of the ill-definition of the equations. The
expression in brackets is the left hand-side of the evolution equation as obtained from
the condition that the spatio-temporal variation of 1 is stationary. If 1is the Lagrangian
density associated to the sine-Gordon equation then the lhs of (11) is identically zero
for an exact solution of the sine-Gordon equation. Therefore (11) can be seen as a
projection of the sine-Gordon operator onto the mode d¢/0da;.

For the (y, k) variables the first mode is non-zero for all values of y but the second mode
is zero when y = 0 so that the Lagrange equation for the evolution of k is automatically
satisfied no matter what the dependance of y and k on time is. For y = 0, the projection
is done on a zero mode, therefore giving no information. Note that this problem only
occurs for a breather or kink-antikink ansatz and not for a pure kink. It has been shown
in [6] that all ansatz of the type:
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sinh{f(y(t),k(t))]
cosh(g(y(t),k(t))z)

where f can be zero cause the y and k evolution equations to be ill-defined. This is
because the partial derivatives %% and %3 become proportional when f=0.

¢(z,y(t), k(¢)) = darctan( h(y(t), k(4))) (12)

Let us now consider the case of the ¢* model [1]:

P11 — zz — (¢ - ¢3) =0 (13)

which can be seen as a generalisation of an equation derived from (1) in which the sine
is replaced by the two first terms of its expansion. Even though the equation is not
integrable an exact solution is known: the kink (or antikink):

1 (z—vt)
h[mﬁ +¢] (14)

To describe collisions between kinks for this model collective coordinates have been
used. In particular Flesch [8] used an ansatz:

#(z,t) = L tan

Yo(z — o) yo(z + zo)
z,zo(t), ¥o(t)) = 1 — tanh[~~——] + tanh[———* 15
¢(z, zo(t), yo(t)) | 7 ] | 7 ] (15)
where g is the center of mass variable and yp is the inverse of the width of the kinks.
The Lagrangian he obtains is very similar to (7.€) in the sense that when ¢ goes through
0 the coefficients of the terms in o2 and Zoyp got to zero. In fact

b = ~(scch{ T (B D 0]y (ool (B E20) g

is zero for 9 = 0 so that again the projection is done on a null vector. The problem
cannot be fixed by introducing #p in the ansatz or by adding a radiation term because
the projection on the yo mode is the problem. Exactly as for the (y, k) variables, the
numerical simulations show that ¥, blows up when zo = 0. From the hamiltonian
Flesch shows [8] that yp necessarily goes to co when z¢ = 0 unless %o is such that
-limw:'oz + V — Hy =0 where V is the potential energy and Hy the total energy.

Prior to the study of Flesch, Jeyadev and Schrieffer [9] had done a collective coordinate
study of the ¢*model using an ansatz derived from the Lorenz transformed solution
of the linearised ¢* equation around a static kink. Because of the complication in the
calculations they simplified the expression. Again they obtained a blow-up for the shape
mode [6].

To complete the picture of the singularity it is shown in [6] for the sine-Gordon model
that the position y and the width k of a kink can be modulated in terms of collective
coordinates and that this is not the case for a breather when y is close to zero. To
be more specific, consider the normal modes of the collective coordinate equations in
the sine-Gordon case and ¢*. For both models the translation mode associated to a
zero frequency is non zero both for a kink and a kink-antikink pair (or breather in the
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sine-Gordon case). On the contrary the shape mode which corresponds to a non-zero
frequency is non-zero for the kink alone and can become zero for the kink-antikink pair.

IV. New ansatzes for sine Gordon and ¢*

Because the ill definition of the equations is due to the fact that the Lagrange equations
are obtained by a projection on a null vector, a way to fix things is not to do a simple
projection anymore. Introducing an @; dependancy in the ansatz leads to a Lagrangian
L(a;, G;, &;) The Lagrange equation for a; is now:

oL d 8L, & 9L
R PR P (n

Using the same sort of arguments as in the previous section it can be shown [6] that
the Lagrange equation (17) is equivalent to:

Foo d d
/ dx[E—j - = :' ¢ )] (18.a)
where

=35 " 595 " 555, (18.5)
which is no longer a simple projection. Following this idea, a simple ansatz that can be
introduced for the breather problem is:

sinh[y(1 + &)

coshkz

#(z,y(t), k(t)) = 4arctan( ) (19)

While this ansatz is rather arbitrary, it is very appropriate to make our point for the
removal of the divergence in the equation for k. It is not also unreasonable since any
shape oscillation can cause a small extension or contraction of the breather. When y is
large the k term leads to a wobbling kink antikink pair. The reason for putting y as a
factor is to avoid a forced time dependance of k. In the absence of perturbations k=0
so that the pure breather or kink antikink solutions still exist. For all these reasons
it is hoped that this ansatz will lead to a successful quantitative comparison with the
solution of the perturbed pde. The evolution equations are currently being derived.

For the ¢* problem, an ansatz of the form

#(z,20(t), 30 (1)) = 1 — tanh[ 2= x;f; F90)) | tann 2= F “‘}(; th0))y (99

eliminates the singularity for zo = 0. Again, it is not unreasonable to assume that
the separation of the kink antikink pair depends on the shape variable yp. It is hoped
using this ansatz to obtain a quantitative agreement with the solution of the partial
differential equation.
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V. Discussion and summary

The breather dynamics and its transition to a kink-antikink pair is an important source
of chaos in the perturbed sine-Gordon equation. This has been shown by solving directly
the partial differential equation. Such a direct approach involves long computational
times and does not lead to a quantitative mechanism for the transition to chaos for sine-
Gordon or the complicated resonance structure for the unperturbed but non-integrable
¢* system. Several authors therefore used the collective coordinate approach [5,8,9]. In
all these cases the choice of the ansatz introduced mathematical singularities.

It has been shown in section III that the source of the singularity lies on the projection
on a mode that vanishes at one point in the evolution of the system. This was estab-
lished by writing the Lagrange equations. At this point it should be remarked that
the problem is attached to only one of the two coordinates. Introducing a relativistic
effect on the problem free coordinate will not remedy the situation. For example in
the (y,k) problem considered introducing ¢ in the ansatz is useless because it is the
effective mass connected with k2 in the Lagrangian that vanishes. Section IV showed
the essential mathematical ingredient that a new ansatz must have. For the breather a
phenomenological k£ dependance was introduced in the ansatz leading to a Lagrangian
containing a k dependance and a fourth order non singular evolution equation through
a second order variational equation.

In the case of ¢%, a phenomenological dependance of the kink antikink separation was
introduced. It is then clear that the evolution equation of the shape mode is not sin-
gular. The same goal could have been achieved by keeping the complete relativistic
ansatz introduced in [9]. This would have introduced very complicated integrals over
x the value of which could not have been calculated analytically. Following a different
approach, Fei and Vazquez [10] took the Lagrangian obtained from the ansatz (15) and
reduced it by some rather severe approximations to the one of a particel coupled with a
harmonic oscillator. Using one adjustable parameter they were able to get a remarkable
semi-quantitative agreement with the pde simulations of [11]. Using our approach we
hope to get a quantitative agreement with the pde without an adjustable parameter.
The price to pay is that the evolution equations will be much more complex than the
ones of [11]. On the other hand it is hoped to get more insight on the collision process.

As a general conclusion we think it is important before going into the lengthy calcula-
tions for the evolution of the collective coordinates to check that the projection is not
done on a null mode or on colinear modes. The calculations shown in section III despite
of their formal appearance reveal a lot on the physics of the problem.
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Abstract

For the Cauchy problem of a sine-Gordon breather under the action of arbitrary, small
perturbations an exact solution in form of quadratures is presented. No application
of inverse scattering methods is made. Besides standard methods above all Backlund
transformations are utilized. The adiabatic approximation originates in an integral
form in quite a natural manner. The complete solution allows us to derive expressions
for the radiation of energy. Examples for constant external force are considered in more
detail.

1 Introduction

Solitons in physics have a long history [1-3]. Kinks and breathers as solitonic
solutions of the sine-Gordon equation have for the first time been studied, in the
framework of dislocation theory, by A. Seeger about forty years ago [4-6]. Since
already in 1870 Enneper had derived this equation in connection with differential
geometry (cf. [1]) , we prefer to refer to it as Enneper equation. During the
past fifteen years much effort has been spent in investigating the perturbed
Enneper equation [3]. For treating the perturbed breather several methods have
been developed, but they all had to make use of inverse scattering theory. In
the following a perturbation theory for the sine-Gordon (Enneper) breather is
presented that is free of inverse scattering methods and that only uses classical
concepts. All the information needed for describing the soliton properties is
supplied by the Backlund transformation. The answer of the system to arbitrary,
small perturbations may be exactly formulated in terms of quadratures. The so-
called adiabatic approximation arises automatically as the discrete part of the
complete solution.

2 Fundamentals and General Solution

The perturbed Enneper equation

Upg — Uy = Sinu — €P(z,1) (1)
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is thought to describe the influence of a small perturbation ¢P on the unper-
turbed breather solution up in the form v = up + u. For |u.| <1 u. obeys
equation (1) linearized about u:

Ue,zr — Ue,tt = (COS ’llb)’u.c — ¢P. (2)
The unperturbed breather is given, with € = z/cho, 7 = (tho)t, by
8sh’gch?¢ sin® 7
(sh20'ch2£ + sin? )2 ’

__1_ sinT
sho ché

up(z,t) = —4 arctan < ) , cosup=1-— (3)
where o is a parameter characterizing the amplitude, the frequency, and the
extension of the breather. Here we restrict ourselves to the breather at rest. The
running breather, to be obtained by a Lorentz transformation, will be dealt with
elsewhere [7).

For initial conditions u(x,0) = fo(x), uc,(2,0) = fi(z) the Cauchy problem
for (2) is solved by u, = u? + ul, where u? and u! are solutions of the Cauchy
problems, with L = 8., — 0;; — cosuy,

Lug=0; u(z,0)= fo(z), ul,(z,0)=fi(z) 4)

Lul = —eP; ul(z,0) = ul,(z,0) =0. (5a)
According to Duhamel’s principle the solution of (5a) is given by
14

ul(e,t) = /(p(:c,t;tl)dtl, (5b)

0

where (p(:c,t;tl) is the solution of the Cauchy problem
Ly = 0; go(:c,tl;t') =0, got(:c,t’;t’) = —cP(x,t’), 0< t <t. (5¢)

We concentrate on the problem (5) with vanishing initial values and see that the
inhomogeneous problem is reduced to the homogeneous problem (5¢), where the
perturbation appears in the inital conditions. The homogeneous equation

Poz — 1t = (cosup)p (6)

describes perturbation solutions or excited solutions of the unperturbed Enneper
equation (1) (with ¢ =0) in the vicinity of the breather state u;. Its most general
solution, needed for solving problems (4) and (5), is furnished by the Backlund
transformation.

In the coordinates p = (z —t)/2 and ¢ = (z + t)/2 the Enneper equation
reads Opqu = sinu. The Backlund transformation (BT) By, ug = u;, expressed
by the pair of first-order differential equations

dp(u; — u0)/2 = (cos ;)™ (1 + sin o;) sin[(w; + u0)/2)
94 (u; + ug)/2 = (cos ;)™ (1 — sin ;) sin[(u; — ug)/2}, (M
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generates a new solution u; representing a soliton (kink) superimposed on the
solution ug of the Enneper equation. For ug = 0 the pure kink solution

ugo)(az, t) = 4arctanexp{(cos ;)" }(z — tsina;) + @i} (8)

results, where o; denotes the Backlund parameter and «; an integration constant.
Two subsequent BTs with different parameters o1, 03 generate a soliton pair

Up(air) = Bo,u1 = Bo,uz, w1 = Bg,ug, Uz = Bg,uo. 9)

According to the Bianchi theorem, for u, also the algebraic form holds

cos[(o1 + 02)/2] Uy — U
. 1
L ey e (10)
The breather form (3) follows herefrom with a; = up = 0,0, = 03 = ic(o real).

The most general variation of the pair solution u, in the vicinity of the

breather solution u; is most simply obtained by a variation with respect to the
4 free parameters a;, 0; and the arbitrary solution ug

6u,,:2<g‘ﬁ’;> ,+Z<a“”> (2—2—'3)0&‘0, i=1,2. (11

i

up = ug + 4 arctan

Here (), means taking the breather values a; = up = 0,01 = 03 = ic. The
variation 6ugp as an excited state of the vacuum state up = 0 obeys the Klein-
Gordon equation with plane waves as solutions

(Ozz — Ot — 1)bug = 0, bug ~ exp{i(kz +wit)}, w=+VEk2+1.  (12)

The variations éu;/6ug entering (11) may be obtained from the system (7) lin-
earized by replacing u; — u,-o + buy, ug — Sup with ugo) from (8) or directly
from integrating (89,5 — 9y — cos u,(-o))éui =0 [8].

The aforementioned procedure provides us with independent solutions form-

ing a complete basis in terms of which the general solution of (6) may be ex-
panded [8]

4 +0o
o(z,t) = ZA,,go,,(:v,t) + / dk[A(k)(z,t; k,w) + B(k)¢(z,t; k, —w)],
v=1 —oo
o = N1, N =sh?cch®¢ +sin’r, €=z/cho, 7= (tho)t

¥, =shésint, 3 = rshésint — sh’s éché cosT (13)

¥g = ché cosT, 4 = ch’ochésinr — ché cos T — sh’o ¢shé sin 7

b(2, 8, k,w) = eilheton) ( 2(sin® 7 — ch®€) + i(kchosh2€ 4 wetho sin 27'))

(sho)=2(1 + ch®ck?)N
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(In [8] the discrete solutions ¢3 and ¢4 containing terms linear in z and ¢ had
been disregarded. As will be shown below, the terms linear in ¢ do not constitute
secularities.)

In order to determine the coefficients A, and A(k), B(k) by means of the
initial conditions (5¢) the form (13) is not well suited. The key for a simple
procedure, hereby making inverse scattering methods superfluous, is the ob-
servation that the solutlon @(x,t) of (6) satisfies the linear combination, with
N = shzachzf + sin? T,

0%p sh’q dyp 2ch?g sin? 7(N — 2sin? ’T'))
Llp] = 8§2+ <h2§a§+sm2r—5;_—)+<l+ i P

- / (14 ch?ak?)[A(k)e'*e+wt) 4 B(k)eik2=w1)dk, (14)

This relation means that through such a combination the contributions from the
discrete terms in (13) disappear and that from the integrand in (13) only the
pure plane wave terms are retained. Equation (14) can be deduced by repeated
use of the Backlund transformations (9) and their linearized versions [7]. For the
much simpler case of a perturbed kink a relation corresponding to (14), but with
first derivatives only, had been found by Seeger already in 1951 [5).

A second relation is obtained by differentiating (14) with respect to ¢

400
%L[¢]=_i / w(l 4 ch?ok?)[A(k)e’ k=9t _ B(k)e!*"=wD)dk.  (15)

— 00

Now we consider equations (14) and (15) at ¢t = ¢ and introduce the initial
conditons (5c) by setting

o(3,1) = 0a(2,1) = 0ua(2,4) = 0;  gu(x,t') = —€P(z,t').  (16)

The advantage of the formulations (14) and (15) is that by inverse Fourier trans-
formation in the variable = these equations can be directly solved for the coeffi-
cients A and B, which now become functions of ¢ . The integrals containing first
and second derivatives of P(z,t ) with respect to © may be integrated by parts.
For P(x,t ) restricted at infinity one obtains save for terms vanishing with the
subsequent k-integration

A(k,w;t')z 4€ B(k,w;t') :A(k,—w,t').

(17)
This remarkable result, namely that the expansion coefficients A, B may be
expressed in the basis functions ¢(z,t; k,w) as given in (13), has also been stated
by McLaughlin and Scott [9], deduced, however, with inverse scattering methods.
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The coefficients A, in (13) are determined by msertmg in p(z,t) the ex-
pressions (17) and requiring the initial condition ¢(z, ¢ ;1 ) = 0. The appearing
Fourier integrals in £ can be solved exactly. The result is

Aq (tl) =sh3c cos T,II — shor sin 7"13, A3(t,) = shosin 7',13

Az(tl) = sh®s sin T,Iz - s]10(c]1205i11 r —1 cos 7',)14, A4(t') = sho cos 7',14

400 '
L) = / L&) p' (yda', fi=€che', fo = £'shE, f = she', fa = che’

N
(18)
N' =sh’och?¢ +sin®r, ¢ =za'/cho, 7 = (tho)t.
The discrete part of (13) can therefore in compact form be written as

4 +oo
(z,8;) = D A(t )pu(z,t) = sho /(901903_903901+902904—904902)6P(z ,1)dz

— 03

400
= i;]_\_,{ Eg%—t—z[s] a’(chf cosT shf sint + shf sinT chE cos T)(E -§)

+(ch£' cos Tlchf COST — shfl sin T'shf sin 7')(7" —7)

+ chza'(chf' cost chésint — ché sinT ché cos 7)) da’. (19)

The occurrence of the linear factor ¢ — ¢’ is not of real significance, since in the
subsequent integration (5b) it may be made to disappear by an integration by
parts

t

/t—t)gt)dt_// "Ydt"dt’. (20)

0

This shows that finally no terms linear in ¢ are retained.

By means of the equations (5b), (13), (17), and (19) the Cauchy problem (5a)
with vanishing initial values is exactly solved in terms of quadratures. In the case
of non-vanishing initial values, the much simpler problem (4) has to be solved
additionally along similar lines. It should be emphasized that the present method
yields exact results exclusively in form of integrals. Since, as is shown below, the
discrete part 4 of (13), given explicitly in (19), corresponds to the so-called
adiabatic approximation, that means that also the adiabatic approximation for
an arbitrary perturbation arises in an integral form, not in a differential form as
in other theories. The differential forms of the adiabatic approximation for any
perturbations of the breather have been integrated here once for all.
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3 Constant External Force

a) Adiabatic approximation

For a constant external force, such as a constant elastic stress in dislocation
theory, eP = s = const. The new rest position for a straight dislocation initally
at u = 0 1s now u = arcsins &~ s. As initial values for the perturbed breather we
choose u(z,0) = us(z,0) = s and u¢(z,0) = up¢(z,0) or u,4(z,0) = 0, where
u(z,t) = up(z,t) + us(z,t) and up denotes the unperturbed breather solution
(3). In this case we have also a solution u? from (4), but as can easily be seen,
there are no contributions of the form 3 A, ¢, of (13). The solution u! of (5),
however, contributes such discrete terms, and by means of (19) and (20) these
give rise to

t !
u?d(z,t) = mehos / { [(shzcr —1)Arsha’ — chzcr—a—,] ché cosT
N w
0

!

COsST

+ sho w'

(ch?ché — sh?a €shé) sin 1'} dt, (21)

where @' = (sin7')/sho, w' = (1+a'2)!/2, and the other symbols as in (13), (18).
The result (21) can be interpreted as the variation of the breather solution (3)
with independently varying parameters sho, tho, cho. Thus it corresponds and,
in fact, is equal to the adiabatic approximation as given by Karpman, Maslov,
and Solov’ev [10] and integrated by EBlinger [11].

Alternatively, we may write u,(z,t) = s+ u,(,t). Then u, satisfies equation
(2) with P = s(1— cosu,). In this case only the problem (5) needs to be solved.
The discrete part ¢4 in (19) contributes

t ' ' [

, h , 3(4 2

u%(z,t) = 7rchrs / { [(shzcr — 1)(Arsha — %5- - chza'-(-l—-(T-,‘;f——)J chcost
0

I I I
cosT a(4d+a?
1 's
sho w

(ch®oche — sh®o €she) sin 1'} dt . (22)

This expression is equal to the adiabatic approximation as derived by Déttling
[12,13] by means of a Hamiltonian formalism and integrated by Bliher [14].
Compared with (21) we see that the same physical problem may lead to different
expressions for the adiabatic approximation. The total solutions u,, of course,
have to be the same in both cases.

b) Energy radiation
The total energy of a solution u(z,t) of (1) with ¢P = s is given by

+o00 400
E= / E(z,t)dz = / [(u2 +u?)/2 + 1 — cosu — su)dz, (23)

-0
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where E = const. By means of (1) one may derive 06/0t = 8(uzu,)/0z. There-
fore the quantity .

E, = "‘[uxut]xza»cha (24)
denotes the rate of energy increase in the region ¢ < = < oo, where a is a
djstance from the centre larger than the breather extension cho. In other words,
E, represents the rate of energy radiated into the region z > a. Contributions
to the asymptotic solution u are u§°) = scost and ugl) of (5) with the integral
part of (13) only. For ch(a/che) > 1 and shoch(a/cho) > 1 the quantity ¢ in
(13) simplifies to

(25)

¢ — ¢a(z,t; k,w) = e (k=twt) (1 — 2————1 — ichok )

1+ ch?ck?

By means of ”Faltungen” (convolutions) one arrives at the expression
+oo o0
va(z,t;1) = —2% / d:cl{I(:c—:cl,t—tl)+2/d£”e_f”[l(x—xl—:c",t—tl)(fu—l

h2051n 7 &" 4+ sh’oché she’ (f - 1))
2

sh®och?¢’ + sin? 7'

] ' " . shochosin 7’ cos’rf
+=lz—z —z 11 )——F——
ot h*ochE’ + sin® 7

(26)
with

I(%, t) = / dlcexp(zlc:c)smwt {WJO(V - %), 0< |Z| <t

0 |Z] > >0,

where w = (k% + 1)1/2 and J denotes the Bessel function of zeroth order. The
derivative 8,1 = —9, I is meant in the sense that an integration by parts should

follow. The first term in (26) gives rise to a contribution s(1— cost) to u$D. The
other terms in general cannot be integrated in closed form.

As an example we consider the low-amplitude breather characterized by o >>
1. Then only the terms ~ sin® 7' and ~ sin27 contribute and the integrations
are readily performed. This leads to the asymptotic solution

uf = s+ smexp [—\/?:ﬂ'cha/2] sin(V/3z — 2t). (27)

This represents an outgoing wave with the wave number k& = /3 and the fre-
quency w = 2. The rate of energy radiation (24) then becomes

E, = 2/3r%s% exp [—\/?:ﬂ'cha] cos®(v/3z — 2t). (28)

On an average, the total emission power (to both sides) of the breather perturbed
by a constant external force s therefore is

= 2v/3n2s% exp [ \/gﬂ'cha] , (29)

in accordance with Malomed [15].
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NUMERICAL RESULTS CONCERNING THE GENERALIZED ZAKHAROV SYSTEM
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Abstract. A generalization of the well known Zakharov system of ion-
acoustic waves (Langmuir solitons) has been obtained while studying the
coupling between shear-horizontal surface waves and Rayleigh surface waves
propagating on top of a structure made of a nonlinear elastic substrate and
a superimposed thin elastic film. The generalization consists in a nearly
integrable system made of a nonlinear Schrédinger equation {(thus including
self-interactions) coupled to two wave equations for the secondary acoustic
system (Rayleigh mode). Here we present essentially the numerical simula~
tions pertaining to the uncoupled case (pure SH mode) and the coupled case
(influence of viscous dissipation in the Rayleigh subsystem, collision of
solitons).

1. General problem

The problem considered consists in studying the possible propagation of
surface solitary waves, eventually solitons, of the surface-wave type
(amplitude decreasing in the substrate) in a structure made of a nonlinear
elastic isotropic substrate (half-space X, > 0) and a superimposed linear
elastic disotropic thin film, the latter being perfectly bonded to the
former (Figure 1). The nonlinearity originates thus from the substrate
while dispersion is induced by the film which plays the role of a wave
guide. In the mathematical description, the thin film is reduced to an
interface of vanishing thickness which, however, still carries a mass
density (hence inertia) and membrane elasticity in agreement with a general
continuum approach [1]. A general surface wave problem in this structure
involves both an SH (shear horizontal) elastic component (polarized along
X3 ) and a Rayleigh two-component displacement polarized parallel to the
so-called sagittal plane Py [2]. The complete coupled nonlinear wave
problem is a tedious one which is shown to be tractable in several steps.
First in the linear approximation an SH dispersive surface mode of the type
of Murdoch [3], and a classical Rayleigh (nondispersive) mode propagate
independently as a consequence of the assumed isotropy of the materials. At
the next order, both modes couple through the nonlinearity [4]. However, if
the primary signal entered in the system through a transducer is of the SH
type and is O(¢), then the Rayleigh subsystem will develop an 0(&2) compo-
nent. This nonlinear mutual coupling [4] is neglected in the first instance
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thin elastic film

nonlinear elastic
substrate

Figure 1 : Setting of the surface elastic-wave problem

and the pure nonlinear SH mode is shown to be governed by a single cubic
Schrtdinger equation at the interface for modulated signals with slowly
varying envelope [5]. Then the problem accounting for the nonlinear cou-
pling with the Rayleigh components is shown to be reducible to the announ-
ced generalized Zakharov system [6] when the main field still is of the SH
type. Here essentially numerical simulations are presented, analytical
results being found in other publications [5], [7].

2. The pure SH surface-wave problem

In this simplified case, using the boundary condition provided by the theo-
ry of material interfaces [1], we find that the initial mechanical (two
space dimensions) problem is governed by the following set of equations in
nondimensional units [5]

820 = (U U,,) = 028 {[u, (@2 02)] + [u, (u2+ 02)] } for %=y > 0,

O, =0 =u, {Tvp2a@+w))y , U=0 , atx,=y=0 , (2.1)

XXx

U(x, y»eo, t) =0 .

where subscripts indicate space (x and y) and time (t) differentiation, A
is the nonlinearity parameter, and B is the dispersion parameter. In the
absence of nonlinearity (A = 0) the above system yields Murdoch's linear
surface waves [3] ; in the absence of dispersion (zero 1left-hand side in
(2.1), ), it yields Mozhaev's nonlinear surface waves [8]. The full system
possesses all good ingredients to exhibit solitary waves of the surface
wave type (so as to satisfy the last of (2.1)). This is proven analytically
by using the Whitham-Newell [9] technique of treatment of nonlinear
dispersive small amplitude, almost monochromatic waves [5]. In the process
"wave action” conservation laws and "dispersive" nonlinear dispersion
relations are established for this type of surface waves that could also be
approached by using Whitham's averaged Lagrangian technique as modified by
Hayes to account for the transverse modal behavior [10]. The analysis [5]
is conducted simultaneously in the bulk (y > 0) and at the interface
(y = 0). Combining the +two at the interface results in a single nonlinear
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Schrédinger (NS) equation for the envelope of complex amplitude a (in
reduced coordinates)

ia +pa_+qlal?a=0 (2.2)

where p and g are real and depend on the working regime (mo , ko) along the
linear dispersion relation of Murdoch's waves. Explicitly,

(0 o - 2K)

B2 + 2 (@ - K2)

1
p(wo,ko)=5wo ) q(wo,ko)=%AB"w , (2.3)

0

where m; is the curvature of the linear dispersion relation. The NS equa-
tion (2.2) is ewactly integrable [11] and admits bright and dark envelope
(true) solitons depending on the sign of the product pg. If the nonlinear
material making up the substrate is known (e.g., LiNbO3 [4] for which
A > 0), then this criterion allows one to select the thin film material to
guarantee the existence of the desired stable surface solitary wave, In the
present case with A > 0, =< B2 < 1 (film of aluminum) and g2 < — (film
of gold) provide stable bright and dark solitons, respectively fS]. The
analytical solutions thus obtained are used as initial-boundary value
conditions in direct numerical simulations performed on the original
(obviously non exactly integrable) two-space-dimension system (2.1). Expli-
cit and implicit numerical finite-difference methods in three-dimensional.

(a) 1st layer (top-interface)

ﬁ’
==

é?ﬂ

—>

/\h N — S 1 e n
na na
(c) 25th layer from top (d) 35th layer from top

Figure 2 : Collision of unsymmetric envelope- solitons of the Surface-wave
type in system (2.1).
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Euclidian space-time grids were used for this (see [12] for technical
details). The surface waves indeed propagate as solitary waves along the
X, = x direction with a nice exponential decrease with depth (along X,= vy).
A lack of accuracy in numerical solutions in depth will show up at the
interface sooner or later. A predominance of nonlinear effects over disper-
sion may yield the formation of surface shock waves after a typical steepe-
ning [12]. While (2.2) obviously exhibits a true solitonic behavior in
soliton interactions, the rather pure solitonic behavior of system (2.1)
for small amplitudes, can only be checked numerically. This is indeed
practically the case as shown in Figures 2 which exhibit the interaction of
two colliding unequal solitons in the SH system at different depths in the
substrate (fifty layers are accounted for in the computation along depth).
At this point it should be noted that there is no difficulty to account for
the viscosity in the pure SH system and the subsequent alteration in (2.2).

3. The coupled SH-Rayleigh problem

In agreement with Section 1, the main displacement field O(¢) is the SH
component, in which case the Rayleigh components are 0(£2). Considering
slowly-varying envelope solutions for the SH components, a long asymptotic
evaluation [6] allows one to show that, after integration along the trans-
verse coordinate y, and appropriate scaling, the whole problem is governed
at y = 0 by the following system of equations for the complex amplitude a
of the SH mode and the real components v and w of elastic displacements
along x and y, respectively, parallely to the sagittal plane PS (Figure 1),

ia, +a,*2xlal>a+2a (o n +o n,) =0

(n) -¢ (n) =-m (n) =-n (lal?) , (3.1)

tt XX xxt

(ng)tt -c (ny) - my () == (lal?) ,
where n, = v_ , n, = w,, and viscosity has been introduced for the Rayleigh
components only (on account of the last remark in Section 2). System (3.1),
a nearly integrable system only, is a system which generalizes the system
of Zakharov [13]- for which A = 0 , w = 0 , o, = u, = 0 ~ that appears in
ion-acoustic systems in plasmas (Langmuir solitons). This system has been
extensively studied analytically. The general system (3.1) obviously is

richer and presents many interesting features. Two of these are especially
examined below.

4, Dissipation-induced evolution of solitons

We consider the evolution of envelope solitary waves in the (SH) a-system
of (3.1) under the influence of dissipation (viscosities m, and Mm;) in the
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(v , w) Rayleigh systems. The two are coupled through the coupling coeffi-
cients p, and p,. In spite of its appearance, system (3.1) conserves the
number of surface phonons (or wave action)

N = fi: lal? dx (4.1)

In the analytical treatment [7] , which applies the balance-equation
analysis to the slow dissipation-induced evolution of the exact one-soliton
solution of the Zakharov system (for the sake of simplicity w = 0 , M = 0

in (3.1) ; this system is not exactly integrable, three different scenarii
of evolution are shown to be possible : (i) adiabatic (slow) transformation
of a moving subsonic soliton into the stable quiescent one, (ii) complete
adiabatic decay of a transsonic soliton with a small amplitude, and (iii)
coming of the transsonic soliton with a large amplitude into a critical
state, from which a further adiabatic evolution is not possible. In the
latter case a numerical investigation of the further evolution of the
soliton 1is particularly enligthening. In a general case, it is shown that
it abruptly splits into the stable quiescent soliton, the slowly decaying
small-amplitude transsonic one, and a pair of left and right-traveling
acoustic pulses slowly fading under the action of the weak dissipation.
This is exhibited in the numerical simulations in Figures 3 and 4. The
abrupt splitting seems to be a new type of inelastic process for a soliton
induced by small perturbations (see the review given .in Ref.[14]). This
concludes our brief excursion in the evolution of one soliton in the damped
generalized Zakharov system.

(a) lul? (b) - n

Figure 3 : Dissipation-induced evolution of the exact one-soliton solution
of Zakharov's system : abrupt split into three pulses in the
n, -system (large wave action, large velocity)
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5. Soliton-soliton collision in the generalized Zakharov System.

As seen above the generalized Zakharov system (3.1) in the absence of
viscosity in the Rayleigh subsystem admits both subsonic and transsonic
one-soliton solutions. The question naturally arises of the interaction
(collision) of such solitons, for instance in the symmetric soliton-soliton
collisions. In the analytical study [7]b the collision-induced emission of
acoustic waves (in the Rayleigh subsystem) was treated for soliton veloci-
ties much larger than their amplitudes. In particular, it was shown that
the acoustic losses are exponentially small unless the solitons' velocities
are much larger than the characteristic sound velocity in the Rayleigh sub-
system. The numerical simulation of the head-on soliton-soliton collision
brings up two basic phenomena : (i) the collision of subsonic solitons
always leads to their fusion into a breather, provided the system is suffi-
ciently far from the integrable 1limit ; (ii) the collision between trans-
sonic solitons gives rise to a multiple production of solitons {(both sub-
and transsonic solitons are produced), and the quasi-elastic character of

Figure U : Dissipation-induced evolution of the exact one-soliton solution
of Zakharov's system : rearrangement of the soliton in the
intermediate case. (Smaller values of wave action and velocity
than in Figure 4).

Figure 5 : Collision-induced fusion of subsonic solitons into a breather
with acoustic emission in the Rayleigh subsystem
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the collision is recovered in the limit of large velocities. This is illus=-

trated in Figures 5, 6 and 7.

(a) lul? (b) n,

Figure 6 : Collision of two transsonic solitons at moderate velocities

Figure 7 :

Comparison between the soliton-soliton collision for system
(3.1) close to the NS equation (a) and the collision of two
transsonic solitons at high velocities in the generalized
Zakharov system (b).

6. Conclusion

It appears that the initial, purely mechanical, surface-wave problem consi-
dered yields, on the one hand, a very interesting physical application
which may be of interest in signal processing (we have a mechanical analog
of 1light solitons in optical fibers; compare [15]) and, on the other hand,
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a class of paradigmatic problems in soliton theory for nearly integrable
systems made of an exactly integrable equation coupled nonlinearly to
d'Alembert equations. The sine-Gordon-d'Alembert systems introduced pre-
viously by Maugin and Pouget [16] in a different physical context belong to
the same class. The modified-Boussinesq-d’'Alembert system introduced recen-
tly by Maugin and Cadet [17] in martensitic alloys appears to be even more
difficult to deal with.
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Abstract. The scattering of topological kinks by point-like impurities is numerica-
Ily studied in the framework of the sine-Gordon and ¢* models. In the first case, we
show that previous approximate analytical results are indeed applicable. Thus, for low
velocities, the reflection coeflicient depends oscillatorily on the distance between im-
purities, i.e., resonant scattering takes place. On the other hand, this effect disappears
for higher velocities. This result is found to hold also for the ¢* model nonlinearly
coupled to the impurities, whereas the linear coupling for the same model gives rise to
a different behaviour.

1 Introduction.

In recent years, it has become clear the importance of the interplay between di-
sorder and nonlinearity in many physical contexts, which is at the root of many
novel and striking phenomena and their corresponding unsolved mathematical
problems [1,2]. Among these, the question as to whether solitons, supported by
nonlinearity, and Anderson localization effects influence each other, changing the
transmission properties of systems, deserves careful study in view of its practical
consequences. As a first step in this direction, the scattering properties of soli-
tons in a system with few impurities must be understood. Even more, as there
are three main types of solitons (see [3,4] and references therein), their scatte-
ring features are different, and a separate analysis is required. The scattering
of non-topological solitons by one and two impurities has been already studied
numerically by Li et al. [5]: both kink-like and envelope solitons were considered
in the simple model of a nonlinear atomic chain with nearest-neighbor interpar-
ticle interactions. A part of the results obtained there [5] has been explained
analytically [6] by means of the perturbation theory for solitons based on the
inverse scattering transform (IST), [7] (see [8] for a comprehensive review of this
technique). On the contrary, the current knowledge about the scattering pro-
perties of the other kind of solitons, topological kinks similar to those beared
by Nonlinear Klein-Gordon (NKG) equations (like the sine-Gordon [sG] or ¢*
ones), is quite limited.

As it was previously pointed out [6,7], interference phenomena are the most
remarkable effects to study wave properties of solitons. Interference may arise
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when the characteristic distance between impurities becomes commensurable
with the characteristic length of the linear waves emitted by the soliton. As a
consequence, the simplest way to observe interference is to consider a system
with two point impurities [6,7]. Solitons emit a rather wide spectrum of linear
waves, and the problem is far more difficult than the scattering of a monochro-
matic plane wave. As a matter of fact, the above mentioned condition that the
two characteristic lengths must be commensurate has to be valid for an averaged
spectral structure of the soliton emission. When a soliton has an internal fre-
quency (like, e.g., an envelope soliton), resonant scattering is naturally expected
[6,7], while for topological kinks this phenomenon does not seem to be possible.
However, resonant scattering has been predicted [6] for a slowly moving sG kink
when the spectral density of the emission generated by it has a narrow maxi-
mum;: interference effects should appear as oscillations of the soliton reflection
coefficient dependence on the distance between impurities. It is not at all a trivial
matter to ask if this prediction is actually useful, for if the kink is too slow, it may
be pinned or reflected by attractive or repulsive impurities, respectively (see [8]
and references therein). As these possible effects were neglected in the analytical
calculation [7] of the reflection coefficient, it is crucial to determine whether they
become as relevant as to inhibit the interference effects by forbidding kink pro-
pagation. This is the problem we address here, namely the resonant scattering of
sG and ¢* kinks: we study it numerically as to compare the so obtained results
to the analytical predictions, thus establishing their validity range, if any.

2 Model, predictions and numerical procedure

The model we deal with is an inhomogeneous NKG system which, in dimensio-
nless units, is described by the equation

b1t — $zz + V' () + €[6(z) + 6(z — D)] Vimp(8) = 0; 0y

In particular, we will consider the following choices for potentials and perturba-
tions:

V/($) = Vimp($) = sin ¢, (2)
V'(8) = =6 + 6%, Vimp(9) = V'(4), (3)
VI(¢) = _¢ + ¢3’ Vimp(‘ﬁ) = "‘¢: (4)

Equation (2) corresponds to a sG model with two point-like impurities, whe-
reas equations (3) and (4) are similarly perturbed ¢* models in which the im-
purities are coupled to the wavefield either nonlinearly, equation (3), or linearly,
equation (4). All of these systems are very well-known in the unperturbed case,
i.e., €00, and their properties have been widely described, but the perturbed
problems are rather difficult and cannot be solved exactly. Nevertheless, reca-
lling that the homogeneous sG equation is integrable, some theoretical analysis
of the problem (2) is possible through perturbation theory for solitons based on
IST. This analysis has been recently carried out by Kivshar et al. [6], who were
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interested in the influence of the parameter D on the scattering properties of sG
kinks, or more precisely, in their reflection coefficient. This coefficient, R, may be
defined as R = Eg;'n)/Ek, where Ej = 8/+/1 — v? is the energy of a sG kink with
velocity v far away from the inhomogeneous region, and Eﬁ,,. is the energy the
kink emits backwards as radiation, due to its interaction with an impurity. The
emitted energy EG) , and, consequently, the reflection coefficient R can be calcu-
lated analytically by means of the aforementioned IST perturbation theory, the
main restriction of it being the necessary assumption that the kink velocity does
not change during the scattering (the so called Born approximation). By this
means, the emitted spectral density can be shown [6] (see similar computations
in [7,8]) to be given by

e2(k) = 41 (k) cos? {é—D;[kv - w(k)]} , (5)
[k — w(k)?
cosh?[7v/1 — vZw(k)/2v]’

2
we
au(k) = 15 (1- )2 ©)
v
where w(k) = v'1+ k2%, and n = 1,2 stand for the case when one and two
impurities are present in the system, respectively. Having these expressions in

mind, it is straightforward to obtain the corresponding reflection coefficients,
which turn out to be

,,':%\/1_1#/ dk en(~F), )

where n = 1,2 stands for the case with one or two impurities, respectively.

It can be seen from equations (5) and (6) that for small v, v? << 1, the
spectral density ¢; (k) has a single maximum at k = 0, with a quite narrow peak
of width of order 2v/7 ~ v. As a consequence, such maximum will provide the
main contribution to the emitted energy and should give rise to a resonant depen-
dence: it is possible to obtain from equations (5)—(7) an approximate estimation
for the value R;/2R; when v? << 1, which turns out to oscillate as

Ry 1 D_1, (D
2k, Y (r Do/ 2)1/4°°s[ T (w)] ®

On the other hand, if the speed is large, there are two maxima at +k,,, kyn =
2v/1rv1 —v2 ~ (1 — v?)~Y/2, and the function €;(k) is not exponentially small
in the region |k] < k. Hence, after averaging over all wave numbers there
is no leading contribution, the oscillatory dependence dissapears, and resonant
scattering is not to be expected.

It must be noticed that, of course, equation (8) makes sense only from a
theoretical viewpoint, because due to total reflection the kink velocity can not
be less than a certain threshold, vy, = \/Eﬁ, below which the kink is reflected
by the impurity. This is the fundamental reason for the necessity of numerical
simulations: to see whether velocities over the threshold still are well accountd
for by the perturbative prediction. The v, value can be obtained thinking of
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the kink as a point-like particle moving in an effective potential originated by the
impurities (see, e.g., [8]). Finally, let us insist that this result applies only to sG
systems; the non-integrability of the ¢* system does not allow to use the same
technique, though it is possible to obtain some results which we will describe
elsewhere [13].

The numerical procedure we use to simulate the kink scattering is the finite
difference scheme of Strauss and Vazquez [9] for nonlinear Klein-Gordon equa-
tions. This scheme has been succesfully employed to study a number of different
perturbed nonlinear Klein-Gordon problems (for instance, see [10,11]; see also
references therein). Moreover, its most important property is that it exactly con-
serves the system energy in the unperturbed evolution, which is relevant to the
accuracy of the computation we intend to do; notice that all we must evaluate
is the energy content at the left, between and at the right of the impurities.
Further details on the scheme can be found in the literature [9,11].
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Fig. 1. Reflection coefficient for a v = 0.4 sG kink vs distance D between impurities.

3 Results and discussion

The numerical results for two values of the initial kink velocity in the sG model
(2) are shown in figures 1 and 2. We plot the ratio R2/2R; which not only can be
directly compared to the prediction (8), but also is a suitable quantity to search
for interference effects. Indeed, when the impurities are far from each other, i.e.,
when D — 00, the reflection coeflicient has to coincide with 2R;, and the above
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mentioned quotient must go to unity; any difference from unity may be treated
as coming from interference. In both figures, the full lines correspond to the
analytically computed dependence given by Egs.(5)—(7). In addition, for v = 0.4
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Fig. 2. Reflection coefficient for a v = 0.9 sG kink vs distance D between impurities.

we performed some simulations for attractive delta-functions, e = —0.1, because
predictions do not depend on the sign of ¢, cf. equation (6; these are shown as full
circles. It comes out that the agreement between analytical and numerical curves
is fairly good. Therefore, in view of our previous considerations, we conclude that
the numerical simulations establish that the resonant scattering of the sG kink
is stipulated by the spectral properties of its emission, according to the above
discussed perturbative predictions.

The main differences arise at v = 0.4 (figure 1); in particular, the asymptotic
behaviors of the analytical and the numerical curves are not the same. This
disagreement, that in principle should not be expected, can be explained in a
natural way. Recall that the analytical results for two impurities were obtained
under the assumption that the kink does not change its velocity during the
scattering (Born approximation). However, as a matter of fact, after the first
scattering the kink loses some part of its kinetic energy, so that it interacts with
the second impurity at a smaller velocity, say v — Av. Hence, the ratio R2/2R;
does not go to 1 when the distance between deltas, go to infinity; rather well, it
verifies

Ry [BR(0) + BG) (v~ Av)

2R, 2B (v) ’ ®
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Fig. 3. Emitted energy by a sG kink vs kink velocity.

E;) being the energy reflected by a single impurity. To understand the difference
between Eg,—n)(v) and Eg,_n)(v - Av), we have analyzed the emitted energy for
a single impurity versus the kink velocity. Figure 3 presents both numerical
and analytical dependences.! From this plot, it turns out that when the initial
velocity is v = 0.4, ngn)(v) > Eg',_n)(v — Av), so that the asymptotics of Ry/2R;
computed numerically is always smaller than the analytical predictions. This
ceases to be true when v becomes larger than v, ~ 0.6 because in that range
E(e,_n)(v) decreases and hence E(Jn)(v - Av) > Es;n)(v). Thus, in figure 2, the
numerical asymptotics is slightly above the line Ry/2R; = 1, the difference
being small due to the short time that this kink takes to cross the distance D
between, much shorter than in the other case. The remaining, little discrepancy
for attractive impurities is due to the fact that, in this case, the linearized sG
model supports the so-called impurity mode (see, e.g., [12]), which is excited by
the kink, giving an additional contribution to the radiated energy as computed
in the region = < 0. Detailed analysis of the impurity mode excitation during the
kink scattering and also a quasi-resonant behavior originated from an energy-
exchange mechanism between the kink and this impurity mode will be presented
elsewhere {13,14)].

After this proof of the validity of the approximate perturbative results (which,
besides, is also a new checking of the Strauss-Vazquez procedure) we have ca-

1 The analytical results, that are below the numerical ones, assumed that the velocity
of the kink does not change, but, in fact, the change in velocity will produce an
additional emission. This effect can explain the amount of emission observed in the
simulations, larger than the predicted.
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Fig. 4. Reflection cocflicient for ¢* kinks with nonlinear coupling [model (3)] vs distance
D between impurities.

rried out identical simulations for the two ¢* models. In the one with nonlinear
coupling, everything is very much like the sG system, as is shown in figure 4:
resonant scattering arises again for slow kinks, and attractive impurities exhibit
also the signature of their mode (described in [15]). This strongly suggests that
the radiation emission by the ¢* kink is quite the same as that of the sG kink. On
the contrary, the phenomena that take place for the ¢* model linearly coupled to
the impurities (figure 5) are different, and cannot be simply explained in terms
of the spectral content of the emission. Let us stress that the reflection coefficient
is never very small, and then we cannot speak of resonant scattering. Moreover,
kinks with v = 0.4 are reflected by the joint action of the impurities if D < 1.4.
Finally, we have observed that the role played by the localized impurity mode
is much more important in this system, seemingly because of the linear nature
of the coupling; notice that now the kink tails interact with the impurities and
hence they are not a ground state of the model anymore. Further research on
this model is needed to describe properly these cooperative scattering effects.
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ABSTRACT We demonstrate that the impurity mode plays an important role in
the kink—-impurity interactions, and a kink may be totally reflected by an attractive im-
purity if its initial velocity lies in some resonance “windows”. This effect is quite similar
to the resonance phenomena in kink-antikink collisions in some nonlinear Klein-Gordon
equations, and it can be explained by a resonant energy exchange mechanism. Taking
the sine-Gordon and the ¢* models as examples, we find a number of resonance windows
by numerical simulations, and develop a collective-coordinate approach to describe the
interactions analytically.

1 Introduction

It is well known that nonlinearity may drastically change transport properties of disorde-
red systems when it contributes to create soliton pulses [1,2]. As a first step to understand
the soliton transmission through disordered media, one has to study the soliton scattering
by a single impurity. The kink-impurity interactions have been explained, for a long time,
by the well-known model in which a kink moving in an inhomogeneous medium is consi-
dered as an extended classical particle obeying Newton’s Law of Motion (see Refs. [3]-[5]
and references therein). In particular, it was shown by Malomed [6] that a sine-Gordon
kink may be trapped by an attractive impurity due to radiative losses, and a threshold
velocity was found analytically. However, the previous theoretical studies [3]-[6] totally
ignored the fact that the underlying nonlinear system supports a localized impurity mode
which may be ezcited due to the kink scattering. Recently, the importance of the impurity
mode have been noticed in our papers [7]-[9]. We have found that a kink may be totally
reflected by an attractive impurity due to resonance energy exchange between the kink
translational mode and the impurity mode. This effect is quite similar to the resonance
phenomena in kink-antikink collisions in some nonlinear Klein-Gordon equations [10]~[13];
and it cannot be predicted by the previous theoretical approach, which took into account
only radiative losses [3]-]6].

In the present paper we briefly review our recent numerical and analytical results rela-
ted to the kink-impurity interactions in two well-know kink-bearing systems, namely the
sine-Gordon (SG) and the ¢* models. In section 2 we describe the resonance phenomena
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in kink-impurity interactions in the SG model, and develop a collective-coordinate appro-
ach to explain the phenomena analytically. Section 3 is devoted to the similar problem
in the ¢* model. We draw conclusions in section 4.

2 Kink-impurity interactions in the SG model
Firstly, we consider the sine-Gordon system including a local inhomogeneity
Ug — Ugz + [1 — €6(z)] sinu =0, (1)

where 6(z) is the Dirac §-function. When the perturbation is absent (¢ = 0), the SG
model (1) supports a topological soliton, the so-called kink which is given by

ug(z,t) = ug(z) = 4tan™" exp(oz), (2)

where 2 = (¢ — X)/v/1— V% X = Vt + X, is the kink coordinate, X = V is its velocity,
and o = +£1 is the kink polarity (without loss of generality we assume that o = +1).

To describe the motion of the kink (2) in the presence of a localized inhomogeneity,
the so-called adiabatic perturbation theory for solitons was usually used [3]-[5]. In the
framework of this perturbation theory, the kink coordinate X is considered as a collective
variable, and its evolution is described by a simple motion equation of a classical particle
with mass m = 8 placed in the effective potential

U(X) = —2¢/ cosh® X. (3)

For ¢ > 0, the impurity in Eq.(1) gives rise to an attractive potential U(X) to the kink.
Since the particle (kink) conserves its energy, it can not be trapped by the potential well if
it has a non-zero velocity at infinity. However, according to the result of Malomed [6], the
kink may be trapped by an attractive impurity due to radiative losses, and there exists
a threshold velocity Vix.(€), such that if the kink initial velocity is larger than V. (€), it
will pass through the impurity and escape to infinity, otherwise it will be trapped by the
impurity [6]. In this consideration the reflection of the kink is impossible.

We have studied the kink-impurity interactions by numerical simulations [7]. We use a
conservative scheme [14] to integrate Eq.(1), and carry out the simulations in the spatial
interval (—40,40) with discrete stepsizes Az = 2At = 0.04. When handling the Dirac
§—function, we take its value equal to 1/Az at z = 0, and zero otherwise. The initial
conditions are always taken as a kink centered at X = —6, moving toward the impurity
with a given velocity V; > 0. We have made intensive numerical simulations of the problem
for € > 0 (attractive impurity), and here we will describe the results for the case e = 0.7
in detail.

In the numerical simulations, we find that there are three different regions of initial
kink incoming velocity, namely, region of pass, of capture, and of reflection (see Fig.1);
and a critical velocity V, = 0.2678 (for e = 0.7) exists, such that if the incoming velocity
of the kink is larger than V., the kink will pass the impurity inelastically and escape to
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the positive direction, losing part of its kinetic energy through radiation and excitation
of an impurity mode. In this case, there is a linear relationship between the squares of
the kink initial velocity Vi and its final velocity Vy : V} = a(V;? — V2), a = 0.887 being
constant.

If the incoming velocity of the kink is smaller than V, , the kink cannot escape to
infinity from the impurity after the first interaction, but will stop at a certain distance
and return back, due to the attracting force of the impurity, to interact with the impurity
again. For most of the velocities, the kink will lose energy again in the second interaction
and finally get trapped by the impurity (see Fig. 1). However, for some special incoming
velocities, the kink may escape to the negative infinity after the second interaction, i.e.,
the kink may be totally reflected by the impurity (see Fig. 1 and Fig. 2). This effect
is quite similar to the resonance phenomena in kink-antikink collisions[10]-[13]. The
reflection is possible only if the kink initial velocity is situated in some resonance windows.
By numerical simulation, we have found eleven such windows. The detailed results are
presented in Table 1.

In order to understand the resonance structure, we define the center of the kink, X(¢),
as the point at which the field function u(z,t) is equal to 7. We define T, as the time
between the first and the second interaction. It is clear that the attractive potential
caused by the impurity falls off exponentially, so that using the same arguments as in
Ref.[10] [see Eq.(3.6) ], we obtain an approximate formula to estimate Tj,(V)

Ta(V) = _VTG__% +b (4)

where V is the kink initial velocity, a and b are two constants. For ¢ = 0.7, the parameters
are empirically determined by numerical data: a =~ 3.31893, b ~ 1.93. We have found that
formula (4) is very accurate for the velocities over the interval (0.10,0.267).

On the other hand, as we have observed that the first kink-impurity interaction always
results in exciting the impurity mode, and the resonant reflection of the kink after the
second interaction is just a reverse process, i.e., to extinguish the impurity mode (see
Fig.2), when the timing is right, to restore enough of the lost kinetic energy and to escape
from the impurity to infinity. Favorable timing in this case means that the occasion
of the second interaction coincides with the passage of the impurity oscillation through
some phase angle characteristics of the impurity mode extinction. Thus, the condition for
restoration of the kink kinetic energy after the second interaction ought to be of the form

le(V) =nT 4+ T (5)

where T}; is the time between the first and the second interaction, T is the period of the
impurity mode oscillation, 7 is an offset phase, and n is an integer. From numerical data
we find that 7 ~ 2.3 (for the case ¢ = 0.7)

Combining Eqgs.(4) and (5), we may obtain a formula to predict the centers of the

resonance windows,

11.0153
Vi=V2:o ——— =2,3,....
n ‘/c (nT + 0.3)2’ n 27 37 (6)
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Similar formulas have been derived for kink-antikink collisions [10]-[13]. In Table I, we
show the centers of the resonance windows predicted by Eq.(6), where T = 27 /Q = 6.707,
) is determined by Eq.(8) with € = 0.7. Numerical T15(V;) is defined as the time between
the first and the second interactions. Note that Ti2(Viny1) — Th2(V,) = 6.7 is just another
expression of the resonance condition (5). From Table I we see that formula (6) can give
very good predictions of the resonance windows.

To analyze the kink-impurity interactions analytically, first, we note that the nonlinear
system (1) supports a localized mode. By linearizing Eq.(1) in small u, the shape of the
impurity mode can be found analytically

Uin (2, 1) = a(t)e"'xl/z, (1)
where a(t) = ag cos(Qt + 0o), Q is the frequency of the impurity mode,
N =4/1-¢/4 (8)

and 6, 1s an initial phase. As a matter of fact, the impurity mode (7) can be considered
as a small-amplitude breather trapped by the impurity, with energy (8]

Fin = 5 [TIER + (PR 4 (1 - ci(@)d,) = Ve )

Now we analyze the kink-impurity interactions by collective-coordinate method taking
into account two dynamical variables, namely the kink coordinate X (t) [see Eq. (2)] and
the amplitude of the impurity mode oscillation a(t) [see Eq. (7)]. Substituting the ansatz

u = ug + Uy = 4tan~t exp[z — X (t)] + a(t)e~c=I2 (10)

into the Lagrangian of the system,
© 1, 1
L= ["[ut = cud ~ (1 - eb(@))(1 - cosu)], (11)

and assuming a and € are small enough so that the higher-order terms can be neglected,
we may derive the following (reduced) eflective Lagrangian

Lojy = 4X7 + -1;(@2 — Q%) - U(X) - aF(X), (12)

where U(X) is given by Eq.(3), and F(X) = —2etanh X/ cosh X. The equations of motion
for the two dynamical variables are

{ 8X + U'(X) 4 aF'(X) =0, (13)

i+ Q%+ (e/2)F(X) = 0.

The system (13) describes a particle (kink) with coordinate X (t) and mass 8 placed in
an attractive potential U(X) (e > 0), and “weakly” coupled with a harmonic oscillator
a(t) (the impurity mode). Here we say “weakly” because the coupling term aF(X) is of
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order O(e) and it falls off exponentially. The system (13) is a generalization of the well-
known equation 8X = ~U' (X)) describing the kink-impurity interactions in the adiabatic
approximation (see,e.g., Ref. [5]).

We find that the dynamical system (13) can describe all features of the kink-impurity
interactions. Firstly, it may be used to calculate the threshold velocity of kink capture.
By using an energy transfer argument, we have found the threshold analytically [4]

Esinh[QZ(Vth,)ﬂVthr]
V2  cosh(Qn/2Vyy,)

where Z(V) = cos™1[(2V? — €)/(2V? + ¢)]. For a given € > 0, this equation can be solved
by Newton iteration to obtain the threshold velocity Viu-(€). Comparing the analytical
results with the direct numerical simulations of Eq.(1), we find that the perturbation
theory used in Ref.[6] is valid only for very small ¢, (¢ < 0.05), while formula (14) gives
good estimations of Viur(€) for € over the region (0.2, 0.7).

Furthermore, Egs. (13) can be easily solved numerically. We perform the numerical
simulations under initial conditions X(0) = -7, X(0) = V; > 0, a(0) = 0, a(0) = 0. We
find that, for a given € > 0, there exists a threshold velocity Vix,(¢) such that if the initial
velocity of the particle is larger than Vi, (€), then the particle will pass the potential well
U(X) and escape to 400, with final velocity Vy < V; because part of its kinetic energy is
transferred to the oscillator.

Below the threshold velocity, the behaviour of the particle is very interesting. More
precisely, if the initial velocity of the particle is smaller than the threshold velocity, the
particle can not escape to oo after the first interaction with the oscillator, but it will
return to interact with the oscillator again. Usually the particle can be trapped by the
potential well, which corresponds to a kink trapped by the attractive impurity. However,
for some special initial velocities, the second interaction may cause the particle to escape
to —oo with final velocity V; < 0. This resonance phenomenon can be explained by
the mechanism of resonant energy exchange between the particle and the oscillator. The

Whr =

(14)

resonant reflection of the particle by the potential well corresponds to the reflection of the
kink by the attractive impurity. Therefore, the collective-coordinate approach can give a
qualitative explanation of the resonance effects in the kink-impurity interactions in the

SG model (1).

3 Kink-impurity interactions in the ¢* model

Now let’s consider the kink-impurity interactions in the ¢* model

Get — Poz + [1 - 65(:1:)](—-¢ + ¢3) =0 (15)

The inelastic interaction of a kink with an attractive impurity (e > 0) was briefly discu-
ssed by Belova and Kudryavtsev [15]. They analyzed the problem by collective-coordinate
approach using two dynamical variables: the kink translational mode and its internal
mode. By numerical simulation of the collective-coordinate dynamical system, they pre-
dicted that the kink may be reflected by the impurity due to energy exchange with its
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internal mode. However, they totally ignored the impurity mode. As we have observed
that, although the SG kink does not have internal mode, it still can be reflected by an
attractive impurity due to resonant energy exchange between the kink translational mode
and the impurity mode, so we have reason to believe that the impurity mode may also
play an important role in the ¢* kink-impurity interactions.

We have studied the kink-impurity interactions in the ¢* model [9], and extended the
previous work in three directions. Firstly, by numerical simulation we have confirmed
the previous claim that a kink can be reflected by an attractive impurity, meanwhile,
we have observed more resonance windows of kink reflection. For example, at ¢ = 0.5
we have found seven resonance windows below the threshold velocity of kink capture.
Secondly, and the most importantly, we have observed that both the the impurity mode
and the kink internal mode take part in the interactions, and the resonance window
structure cannot be predicted by supposing that there exists only one localized mode. In
particular, we have found that due to the joint effect of the impurity and the kink internal
mode oscillation, some resonance windows may disappear. Finally, we have developed a
collective—coordinate approach taking into account three dynamical variables: the kink
coordinate, the amplitude of the impurity mode and that of the kink internal mode.
QOur collective-coordinate approach can give a qualitative description of the resonance
phenomena in the kink-impurity interactions. The detailed results is reported Ref.[9].

4 Conclusion

We have briefly reviewed our recent numerical and analytical results related to the kink-
impurity interactions in the sine-Gordon and the ¢* models. In particular, we have
demonstrated that a kink can be totally reflected by an attractive impurity if its initial
velocity is situated in some well-defined resonance windows. This effect can be explained
by a mechanism of resonant energy exchange between the kink translational mode and
the impurity mode (for the SG system), as well as the kink internal mode (for the ¢?
model).

This work is partially supported by the Direccion General de Investigacion Cientifica y
Tecnica (Spain) under Grant No. TIC 78/89. One of us (Zhang Fei) is also supported by
the Ministry of Education and Science of Spain. Yu.S. Kivshar acknowledges the financial
support of Complutense University through a sabbatical programm.
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TABLE I Resonance windows of the kink-impurity interactions in the SG model

n |V, predicted | Numerical Resonance

by Eq.(6) T12(Vy) Windows
6 0.25498 42.5 (0.2548, 0.25505)
7 0.25842 49.2 (0.25825, 0.2585)
8 0.26064 56.2 (0.2605, 0.2607)
9 0.26215 62.8 (0.26205, 0.26222)
10 0.26323 69.5 (0.26315, 0.26327)
11 0.26403 75.9 (0.26395, 0.26408)
12 0.26463 82.8 (0.26461, 0.264635)
13 0.26510 89.6 (0.26510, 0.26512)
14 0.26547 97.1 (0.26546, 0.26547)
15 0.26577 103.3 (0.26577, 0.26579)
16 0.26602 109.9 (0.26600,0.26602)
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Fig.1 The kink coordinate X (t) vs time for initial velocities V; situated in three difffe-

rent regions: the region of pass (solid line, V; = 0.268), of capture (dotted line, V; = 0.257),
and of reflection (dashed line, V; = 0.255).
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Fig.2 The impurity displacement u(0,t) vs time in the case of resonance (V; = 0.255).
Note that between the two interactions there are four small bumps which show the impu-

rity mode oscillation, and after the second interaction the energy of the impurity mode is
resonantly transferred back to the kink.
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ABSTRACT

We perform an approximate analysis of some particular self-similar solutions of the
(2+1)-dimensional coupled nonlinear Schrodinger equation. These solutions are invariant
under a point-symmetry subgroup of the model that involves the Schridinger conformal
symmetry. We use a variational approach to classify them and to determine their approximate

structures.

Many physical systems deal with the propagation of two waves that interact
nonlinearly. In this paper, we concentrate on the model

T 9y sl VO + 1+ ] o
eV=T v 4 D) 4 A +n[]w(2 (1 + h) Py = 0

0y

where y(x,y,z) are complex functions (throughout the text, i = 1,2), 4 is a real parameter,
7 =21 and £ =%1. The above (2+1)-dimensional coupled nonlinear Schrodinger equation is
of particular interest in the field of transverse effects in nonlinear optics (a review and
extensive bibliography on the subject can be found in Ref. 1). In fact, it is the basic model
that describes the time-independent copropagation? (€ = 1) and counterpropagation34 (€= —
1) of two waves in a self-focusing (17 = 1) or self-defocusing (17 = ~1) media.

Equation (1) is not completely integrable in the sense that it cannot be solved by
inverse scattering techniques. However, it has the property of being invariant under a point-
symmetry group for which the corresponding algebra is the direct sum between the 9-
dimensional Schridinger algebra sch(2) and a change of phase generator. The whole set of
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generators then includes one conformal symmetry C, one dilation .D, one rotation J, two
Galilean boosts Ky and K, three coordinate translations Py, Py and P; and two constant
change of phase M) and M®). Thus, equation (1) is very appropriate for the application of
the symmetry reduction method.

Here we concentrate on the specific 2-dimensional symmetry subalgebra

Xi=J+ay MW+ g, M@ | x,=C+ P, + by MU 4 b, MO | )

where g; and b; are real parameters and

J=yodx—x0y , MO =_gi-1 V——I(V/(")av,w—c.c.), P,=9, ,
(3)
C=z(z 8,+x8x+y8y)~%(x2+y2)(M(1)—M(2))—HZ(M(1)+M(2)) .

Following the standard symmetry reduction procedure, we calculate the invariants of the
subgroups by solving the equation

X Oey,z Wy ) @4 = 0 @

where @ is an auxiliary function. Since subalgebra (2) has generic orbits of codimension 1 in
the space of independent variables and 4 in the space of dependent variables, the solution of
Eq. (4) leads to five invariants &, fO(&) and fO*(&) satisfying

YA = (1 + 227172 Ai)g) ex V——Te"'l(iz g%+ a; 0 b; arctan z)J .

&)
§2=r2(1 +22) !,

where r2 = x2 + y2, 6 = arctan (y/ x) and g; are chosen as integers. Substituting relations (5)

in Eq. (1) yields the reduced coupled ordinary differential equations

é‘§+§f§‘>+(w—g—:2—§§)ﬂ»+nUﬂM - 0= 0.
(6)
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The task of solving Eq. (6) exactly is quite difficult. Usually, one restricts the
analysis to the determination of conditions under which the reduced equations are of Painlevé
type, that is, when none of their solutions have movable critical points. The method is well
adapted for single equations since a large classification of second and third order Painlevé
type equations exists®?. This is not so easy for coupled systems. In any case, one can
show for the uncoupled case h = -1, that Eq. (6) does not even have the Painlevé property.
For all these reasons, we restrict our analysis of Eq. (6) to the determination of approximate
solutions. The method we use is based on a variational principle and is well described
elsewhere®9, In the following, we will only summarize the main steps of the calculations.

Equation (6) can be reformulated as a variational problem with the Lagrangian

V=4 v e ) P[0 @
where

V= | 4 - byl AP L €2 P +-§%2-lf“'12—%n|f‘q4.

8)
Equation (6) is then derived from the cylindrical Euler equations
s[or)aor v,
¢ (a7 ¢ of "

The essence of the variational approach lies in the choice of the most appropriate trial
functicns that describe, as faithfully as possible, the exact solutions behaviour. On the other
hand, since we want to obtain simple analytical results, we have to restrict our choice to a
generic one. We found that a good compromise between simplicity and accuracy is given by
the trial functions

i) = A,.L(i{ﬁ.) ,
fl Wi (10)

where A; and W; are real parameters and
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Lgi) = cxp[— {,’,-2] a;=0
Lgi) = {; expl— {;2] a=%1
(11)
Lgi) = (1 - 2{,‘2) exp|— {,‘2] a;=0
Lsi) = {,}2 cxp[— {,',-2] ai=t2

The choice of real functions L()({), {; = & /W;, is based on the form of the exact
localized solutions of Eq. (6) in the linear limit 77 = 0, which are the well known Laguerre-

Gauss modes. Relation (11) gives the expression of the first four modes.

Substituting the ansatz (10) in the Lagrangian (7) and integrating the &-variable from 0
to infinity yield a reduced Lagrangian denoted (V) that is independent of & Thus, solving the

corresponding reduced Euler equations

9 a(V):l +LB(V) -B(V)=B(V) =0, y;=A;and W;,
06 [0ye| &0ye Oy 9y (12)

lead to the four relations

asi Wi_;
(13)
_n . 2 oai — L W4 oo
_a5i[2 o3 + 2 af au; 2 W; a21] )
and
E i
b;=——1—5[a3i+a‘-2a4i+%W;‘a2i—7lEi‘15i"71(1+h)W3 - ag| .
oy Wi > (14)

The constant E; = A2 W2 are proportional to the energy J; in each wave through
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2n oo s
;;,.=f fl\,,(qzrdrde:znf lUiP de =2 m o E; .
0 0

0 (15)
The parameters o; (k=1,...,5) and o are given by
ali=f (LGP &ag a21=f [LOP Lt ,
0 0
o3 = [ }c,dc,, “““f [LOP ¢ agi
dC; 0
(16)
asi = f LOFGati, o= [Lu{; H [Lm( ; n §dt
0 o 1
and can be evaluated analytically.

Relations (13) and (14) are parametric equations that give E; and b; as function of the
widths W1 and W; of the approximate localized solutions (10). We solved them for various
values of W, and W,.

For instance, figure 1 shows the normalized energy S = (2 + h) Z; in each wave as
function of b for two identical beams, i.e. A;=A2, W1= W3 and by = b2 =b. The curve
numbers refer to the mode number in Eq. (11). The "+" and "-" signs refer to a self-
focusing medium (7) = 1) and a self-defocusing medium (1) = —1) respectively. The points b
= 1,2,3... and S = 0 correspond to the linear limit } — 0. The case described by curve 1t
was studied in Ref. 10. The energy values at b — — oo are 4%, 16x, 24n, 32% and
correspond approximately (within 5%) to the energy of the first self-trapping solutions of
Eq. (1) (no z-dependence in the amplitudes)!1.12, The fundamental self-trapping solution is
known to be unstable and to eventually cdllapse under a self-focusing process (a review and
extensive bibliography can be found in Ref. 13). We suspect a similar behaviour for the
higher-order self-trapping solutions.
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Figure 1: Normalized energy S = (2 + A)Z; in each wave
for two identical modes. Numbers refer to Ly,..., L4 and

"+" and "-" signs stand for n =1 and n = -1.

In addition to the above identical localized self-similar solutions, there is a large set of
solutions where W, # Wy, For example, solid curves on figures 2 show the energies %) and
25 as function of by and b, for two beams in the fundamental mode withA=1and n1=1.
For comparison, coarse dashed curve give the energy for the case W) = W5 and fine dashed
curve gives the energy for 4 = — 1 (no nonlinear coupling). In figure 2, we have chosen W)
= (0.928 which leads to 0.695sW,<1.209 and provides the possible self-similar solutions
centered around b = by =~ 2. The points on the solid curves correspond to Wo=1.209.

The most significative result of our analysis is the possible coexistence of self-similar
solutions having different mode profiles. Our calculations show that this "nonlinear
superposition” seems to be always possible within a certain parameter range. Specific
examples of a such behaviour will be reported elsewhere.
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(a)

(b)

Figure 2: Energies Xj and X, as function of b; (a) and b,

(b) for two waves in the fundamental mode with n =1, h =
1, W1 = 0.928 and 0.695sW,<1.209.
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In conclusion, one can say that the results of this study are indicative of a large set of

self-similar nonlinear coherent structures predicted by the model (1). The coexistence of

these self-similar coupled waves can be of interest in the study of various nonlinear systems

and in particular for the counterpropagation of two Gaussian optical beams in a Kerr media4,
In that case, the question of temporal stability of such modes has to be addressed. We plan

to go back to that issue in a near future.
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1. Introduction.

Soliton equations in 1+1 dimensions with sech-squared solitons and corresponding two-
soliton solutions:

ua(z,t) = 282 1In fy, fo=14expb +expby + Ay, exp(6; + 62), ]
0; = ~kizt+wit+7 (1)
are known to appear in infinite families? with a characteristic coupling factor Aj,.
Hirota’s binary operators?) can be used in a direct way for the construction of sequences
of candidate soliton equations which admit two-soliton solutions with the same coupling.
The possibility of obtaining in this way an infinite sequence of candidate soliton solu-
tions, for a particular class of dispersion relations and an appropriate choice of A,
may often hint at the existence of an integrable hierarchy, especially when the lower
members of the sequence are also found to admit three-soliton solutions.
Here we develop this idea into an algorithmic procedure based on the construction of
multidimensional bilinear equations. The method applies to first order equations with
respect to time and is shown to produce a new soliton equation related to the Sawada-
Kotera (SK) hierarchy®.

2. Key-properties of the D-operators.

Hirota’s D-operators are defined by their action on a pair of functions:

Der .. . DErfg= (0, — azll)”‘ oo (02, — az;.)”" f(z1,...za)g(ah,. .. 2]) (2)

=z

Three key-properties of these operators can be derived from this definition®). They are
related to their action on exponentials

Property 1.
f =3 0ixi+7 and O =31_ fiz;+ 7' with a;,B;,7,7 = constant (3)

then: Drr ... DB exp@.exp @ =[], (a; — B;)"')exp (© + ©'). (4)
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Property 2.

Let (p1,...pa;m) be a set of integers with p; +... + p, = 2m.
I gpzy,pnza = 082 ... 08" q(z1,. .. z,), then:

=dp1z1,...pnzn + Qm(ply'-'pn;q)y (5)
f=expq/2

folper . D f.f

where Qum(p1, . .. Pa; ¢) stands for the “even part-partitional nonlinearity” which involves
even-order partial derivatives of q and which contains as many different terms of degree
p(2<p<m)

P 4 n
C(ri;) th';zl,...r;,.z"; ZT.‘,’ = pj, ZT.‘J‘ = 2m;,

i=1 =1 j=1 (6)

m; = integer, r;; = integer or zero,

as there are different ways of dividing 2m elements, of which p; are of type z;, among
p indistinguishable non-empty boxes with the condition that each box must contain
an even number of elements, each coefficient C(r;;) being equal to the combinatorial
weight of the corresponding partition (number of such partitions if all elements can be
distinguished).

This second property can be compared with the partitional property of the ordinary
derivative:

exp(—)dZ exp(q) = > [erl...cal(@) ... ()] nlgligs ... g%n (7)
where the sum is taken over all partitions of n which are written as follows:

n=cy+2c+...+ncp, ¢ =number of parts equal to i.

Property 3.
Let P(0,,,...0z,) be a polynomial differential operator satisfying the conditions:

P(0,...0)=0 and P(-0;,...—0;,)=P(0:,...0:,). (8)
and let F} be an expression of the form:
n
F,=1+4+exp0O; +expO; + A(a;j)exp(O1 + 0;), O;= Za,-ja:j + 7 9
i=1
with parameters a;; satisfying:
P(ai1,...ain) = exp(—0,;)P(0y,,...0;,)exp©; =0 (10)
It then follows from property 1 that:

P(Dzn'--Dz,.)F2'F2 = 2{P(0{11 — Q21,...01p —-0{2")

(11)
+ A(aij)P(a11 + @21, ... a1 + a2q) } exp(©1 + O2).

Property 3, taken with n = 2, z; = z, 23 =t is known as the Hirota theorem?.
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3. Direct bilinear method in 1 4+ 1 dimensions.

Starting from a sequence of linear polynomial differential operators with respect to x
and t one may construct bilinear equations which, on account of the above properties,
give rise to candidate soliton equations "in primary form”.

This construction can be illustrated with the following class of bilinear operators:

P(0:,0,) = 0; (63'"“ + 8,) , m= integer. (12)

i) At m=1one has: P(k;,w;) = exp(—0;)P,(0;,0;) exp ©; = k;i(k} —w;) (13)
Taking w; = k? it follows from property 3 that:

ke — 2
D:(D% + Dy)fa.fa =0, ARV = (—l—ﬁ) . (14)

O,-:—k.'z+k?t+‘r;
=AKdV
A2=AL

k1 4 ko

Application of property 2 shows that the following equation for ¢(x,1):

= gt + (/2% + 3q§z = 0) (15)
F=expq/2

fD, (Dasc + Dt) f.f

with the partitional nonlinearity Q2(4;q) = 3¢, (determined by the even part
partitionsof 4: 4=2+42, C(2,2) = 513(242) = 3), admits two-soliton generating
solutions g; = 2 In fo with 415 = A{gdv.

Setting u = ¢, one finds that u(z,t) satisfies the equation:

Uy + uzz + buu, = 0, (16)

which is recognized as the KdV equation (the well-known integrability of this equa-
tion is here strongly suggested by the fact that the corresponding bilinear form
satisfies the N-soliton test®).

ii) At m =2one has: Py(k;,w;) = exp(—0;)P2(0,,0;) exp ©; = ki(k? —w;) (17)
Taking w; = k? it follows from rel.(11) that:

k% — kiks + kg) AKdV (18)

5 — SK _
DI(D:C+Dl)f2'f2‘®;=—k.'z+k?l+r.' _‘0) A12 - (kf +k1k2 +k§ 12 -

_ASK
A=Ay,

This means that the evolution equation:

= qp + gor t+ 1592294 + 15qu = 0) (19)
f=expgq/2

f72D; (D} + Do) f.f

with the partitional nonlinearity Q3(6;q) = 15¢2,94, + 15¢3, (according to the
even part partitions of 6 : 6 = 4 4+ 2, with (462) =15 and 6 = 2 4+ 2 4+ 2 with
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3(, 5 ,) = 15) has two-soliton generating solutions gz = 2In f with A, = AF¥.
This equation is the primary version of the fifth order SK equation. It is a straight-
forward matter to verify that the corresponding bilinear form passes the N-soliton
test.

4. Multidimensional bilinear equations.

Further members of the KdV hierarchy (and the SK hierarchy) can also be derived
at m = 2,3 and 4 (m = 3 and 5) from two-soliton considerations. One considers
multidimensional expressions involving binary operators Dz,41 = Dy,,,, with respect
to appropriate auxiliary time variables t2,41:

B2m+2 (D;, Dt, e D2p+1 ooy Otp) =
D, (D™ 4+ D)+ Y o, (D*1 + Dypir) Famozpt1 (Dartr), (20)

p

where a, = constant, 1 <p < m —1, and where Fym—2,41(D2r+1) denotes a product
of auxiliary D-operators, of weight level 2m — 2p + 1.
The integers p, r and the constants a, are to be chosen such that:

B2m+2 (D,;, Dt, ven D2p+1 ceny Olp) fg.fg

e.-=—k.-z+k,.’"'+‘z+2p | L T 0 (21)

KdV ( 4SK
App=aK (Au)

and such that all auxiliary variables can be eliminated, eventually, from the correspond-
ing multidimensional evolution equation:

f_2B2m+2 (D,;,Dt,...Dgp.H ...;Olp)f.f =0 (22)
f=expq/2

by means of available lower-order equations in the hierarchy.

This construction, followed by the appropriate dimensional reduction, is most easily
illustrated at m = 2 with A, = Afgdv.

Applying once more the property 3, one sees that:

Oi=—kiztKithr 20kiky(ks ~ k) exp (014 ©2)  (23)
A12=4{(,4'V

D, (D% + D) fz.le

and that the introduction of an auxiliary ¢-variable t3, by setting 7; = k?t5, enables us
to construct the ”counter-term”:

Dz (Dx 4 Ds) f 'le Oi=—kiztkftHlts 24Kk (b — k)" exp (01 + ©2) (24)

=AKdV
_Alﬁ
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Thus [D. (D3 + D) = 3D (D2 + Do)l | oy oaseras, = O (25)
Apa=AKdV
It follows from property 2 that the 3-dimensional evolution equation:
- 5
772 . (05 + D) - 302 (D2 4 Dw)| 1.1
f=expq/2 (26)

1 5
= Qe+ 6 (qﬁz + 15‘]21(141 + 15‘];1) - 6 (qs:,ts + 3q21q:,t3) = 0,

has two-soliton generating solutions g2(z1,%,t3) = 2 In fa(z,t,3).
The auxiliary variable ¢3 can be eliminated with the help of the primary KdV equ.(3)
(in which t has been replaced by t3) according to which:

Go,ts = —Qaz — 303, and g3z, = —Gez — 6420045 — 63, (27)
The resulting two-dimensional equation:
qzt + g6z +10¢2:q42 + 5q§z + 10(1;1 =0 (28)

is the primary form of the fifth-order KdV equation (its known integrability is also
suggested by the fact that the corresponding bilinear forms pass the N-soliton test).
Introducing at m = 3 the auxiliary fifth-order SK-time ¢5 one verifies in the same way
that:

7
[DI (D + Di) - '1—0D: (D + Ds)] fa.fa R 0. (29)
A=A
Dimensional reduction of the corresponding evolution equation:
- 7
£ [Dz (D% +Di) — 35Dz (D3 + Ds)] f.f =0 (30)
f=expq/2

by means of equ.(19) produces the following two-dimensional candidate soliton equation:

Gzt + 8z + 2192206z + 21932955 + 21q3, + 12605, g4z + 63g2045, +63¢5, =0 (31)

which is recognized as the primary version of the seventh-order SK equation.

5. Soliton equations with higher-order regularized long wave dispersion.

Let us now consider a family of linear operators associated with higher-order regularized
long wave dispersion:

L (0;,0) =0; (3¢ +0, — aﬁ"'at) , m= integer. (32)
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At m =1, it is found on account of property 3 that:
2 —
Dz (Dt + Dz - Dth) f2'f2 (').-=—k.'z+k.'(1—k,-2)_lt+1'.' -
A12=A{§‘V (33)
4KEHS (ks — ka)”
- PO o
whereas:

 12k3K3 (k1 — k2)’
Oi=—kiz+kitstni (1 —k3)(1 — k2)

App=afdV

D, (D2 + D3) f.f2

exp(©1+02)  (34)

It follows that:

1 3
[D, (De+ D~ DXD,) + 3D, (D} + D3)] I IR C)
412=A{(2"V
Dimensional reduction of the corresponding evolution equation:
1
f?|D, (D:+ D; — D:Dt) + =D, (D: + D3)| f.f =0 (36)
3 f=expq/2

by means of the primary KdV equation (14) leads to the two-dimensional equation:

(qt +qz — Q2z,t)” ~ 29329zt — 4922922, =0 (37)

which is the primary form of the AKNS equation. This equation belongs to an integrable
family® higher-order members of which can be derived (at m = 2 and 3) in a similar
way.

Introducing SK-equations as auxiliary equations (instead of KdV equations) at m = 3
it is found that:

[Ds (Dt + D; = DSDy) + $ D¢ (D} + D7) + $D:D% (D3 + Ds)] fz-le =0 (38)

©;=—kiz+ki(1-k¢) " t+kPts+kts
Au=ASK

Dimensional reduction of the corresponding evolution equation:

1 3
f7* |Dz (D¢ + Dy = D3Di) + =D (D] + Dr) + £ DuDZ (D7 + Ds)] f.f| =0
f=expq/2



397

by means of the equ.(19) and (31) produces the two-dimensional equation:

Q2z,t + @3z — Q82,0 — 18G22962,t — 15Q22,096z — 27932052,0 — 30q32 45+
— 33042040t — 3¢7290t — 144022042 020,¢ — 8105, 0az 0
— 18092932932, — 45932942921 — 45922952951 (40)
— 63¢3,02z,« — 108¢3,q22,¢ — 13503 ,93: 0zt

+o00
+ 9¢32 / O [quq4y + qu] dy=0
T

The integrability of this question, suggested by the fact that the corresponding bilinear
forms pass the 4-soliton test, was recently confirmed by the construction of a Lax-pair.
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THE INVERSE PROBLEM OF DYNAMICS FOR THE NONLINEAR
KLEIN-GORDON EQUATION. PULSONS AND BUBBLES IN THE MODELS
WITH LOGARITHMIC NONLINEARITIES
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Fondation Louis de Broglie, 23 quai de Conti, 75006 Paris, France,
and
The USSR Academy of Sciences,
1IZMIRAN, Troitsk, Moscow Region, 142092, USSR*)

We review the results on the inverse problem of dynamics for the nonlinear
Klein-Gordon equation in n+1 dimensions [1-3].

First, we formulate a theorem, which gives the procedure of reconstruction of
nonlinearities from a given rotationally-invariant scalar field distribution. As
an illustration, all power nonlinearities corresponding to a certain class of
spatially-localized time-dependent algebraic solutions are constructed. Some
other wave equations having spherically-symmetric soliton solutions with finite
energy are also obtained.

Further, we demonstrate that the logarithmic nonlinearity is the only one,
which admits the real solutions in the form of solitons with oscillating
amplitude. The structure of these muitidimensional puisating solitons (pulsons)
is investigated. We also construct wave equations having soiutions in the form
of expanding bubbles.

Finally, the results of the numerical experiments [4] on collisions of the
pulsons are discussed.
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